Database
REAL AND COMPLEX NUMBERS
Words over a set
Prefixes of a word
pfxcl
Next ⟩
pfxmpt
Metamath Proof Explorer
Ascii
Unicode
Theorem
pfxcl
Description:
Closure of the prefix extractor.
(Contributed by
AV
, 2-May-2020)
Ref
Expression
Assertion
pfxcl
⊢
S
∈
Word
A
→
S
prefix
L
∈
Word
A
Proof
Step
Hyp
Ref
Expression
1
eleq1
⊢
S
prefix
L
=
∅
→
S
prefix
L
∈
Word
A
↔
∅
∈
Word
A
2
n0
⊢
S
prefix
L
≠
∅
↔
∃
x
x
∈
S
prefix
L
3
df-pfx
⊢
prefix
=
s
∈
V
,
l
∈
ℕ
0
⟼
s
substr
0
l
4
3
elmpocl2
⊢
x
∈
S
prefix
L
→
L
∈
ℕ
0
5
4
exlimiv
⊢
∃
x
x
∈
S
prefix
L
→
L
∈
ℕ
0
6
2
5
sylbi
⊢
S
prefix
L
≠
∅
→
L
∈
ℕ
0
7
pfxval
⊢
S
∈
Word
A
∧
L
∈
ℕ
0
→
S
prefix
L
=
S
substr
0
L
8
swrdcl
⊢
S
∈
Word
A
→
S
substr
0
L
∈
Word
A
9
8
adantr
⊢
S
∈
Word
A
∧
L
∈
ℕ
0
→
S
substr
0
L
∈
Word
A
10
7
9
eqeltrd
⊢
S
∈
Word
A
∧
L
∈
ℕ
0
→
S
prefix
L
∈
Word
A
11
6
10
sylan2
⊢
S
∈
Word
A
∧
S
prefix
L
≠
∅
→
S
prefix
L
∈
Word
A
12
wrd0
⊢
∅
∈
Word
A
13
12
a1i
⊢
S
∈
Word
A
→
∅
∈
Word
A
14
1
11
13
pm2.61ne
⊢
S
∈
Word
A
→
S
prefix
L
∈
Word
A