Metamath Proof Explorer


Theorem pfxcl

Description: Closure of the prefix extractor. (Contributed by AV, 2-May-2020)

Ref Expression
Assertion pfxcl S Word A S prefix L Word A

Proof

Step Hyp Ref Expression
1 eleq1 S prefix L = S prefix L Word A Word A
2 n0 S prefix L x x S prefix L
3 df-pfx prefix = s V , l 0 s substr 0 l
4 3 elmpocl2 x S prefix L L 0
5 4 exlimiv x x S prefix L L 0
6 2 5 sylbi S prefix L L 0
7 pfxval S Word A L 0 S prefix L = S substr 0 L
8 swrdcl S Word A S substr 0 L Word A
9 8 adantr S Word A L 0 S substr 0 L Word A
10 7 9 eqeltrd S Word A L 0 S prefix L Word A
11 6 10 sylan2 S Word A S prefix L S prefix L Word A
12 wrd0 Word A
13 12 a1i S Word A Word A
14 1 11 13 pm2.61ne S Word A S prefix L Word A