Step |
Hyp |
Ref |
Expression |
1 |
|
pfxcl |
|
2 |
|
pfxcl |
|
3 |
|
eqwrd |
|
4 |
1 2 3
|
syl2an |
|
5 |
4
|
3ad2ant2 |
|
6 |
|
simp2l |
|
7 |
|
simpl |
|
8 |
|
lencl |
|
9 |
8
|
adantr |
|
10 |
|
simpl |
|
11 |
7 9 10
|
3anim123i |
|
12 |
|
elfz2nn0 |
|
13 |
11 12
|
sylibr |
|
14 |
|
pfxlen |
|
15 |
6 13 14
|
syl2anc |
|
16 |
|
simp2r |
|
17 |
|
simpr |
|
18 |
|
lencl |
|
19 |
18
|
adantl |
|
20 |
|
simpr |
|
21 |
17 19 20
|
3anim123i |
|
22 |
|
elfz2nn0 |
|
23 |
21 22
|
sylibr |
|
24 |
|
pfxlen |
|
25 |
16 23 24
|
syl2anc |
|
26 |
15 25
|
eqeq12d |
|
27 |
26
|
anbi1d |
|
28 |
15
|
adantr |
|
29 |
28
|
oveq2d |
|
30 |
29
|
raleqdv |
|
31 |
6
|
ad2antrr |
|
32 |
13
|
ad2antrr |
|
33 |
|
simpr |
|
34 |
|
pfxfv |
|
35 |
31 32 33 34
|
syl3anc |
|
36 |
16
|
ad2antrr |
|
37 |
23
|
ad2antrr |
|
38 |
|
oveq2 |
|
39 |
38
|
eleq2d |
|
40 |
39
|
adantl |
|
41 |
40
|
biimpa |
|
42 |
|
pfxfv |
|
43 |
36 37 41 42
|
syl3anc |
|
44 |
35 43
|
eqeq12d |
|
45 |
44
|
ralbidva |
|
46 |
30 45
|
bitrd |
|
47 |
46
|
pm5.32da |
|
48 |
5 27 47
|
3bitrd |
|
49 |
48
|
3com12 |
|