Metamath Proof Explorer


Theorem pfxf

Description: A prefix of a word is a function from a half-open range of nonnegative integers of the same length as the prefix to the set of symbols for the original word. (Contributed by AV, 2-May-2020)

Ref Expression
Assertion pfxf W Word V L 0 W W prefix L : 0 ..^ L V

Proof

Step Hyp Ref Expression
1 pfxmpt W Word V L 0 W W prefix L = x 0 ..^ L W x
2 simpll W Word V L 0 W x 0 ..^ L W Word V
3 elfzuz3 L 0 W W L
4 3 adantl W Word V L 0 W W L
5 fzoss2 W L 0 ..^ L 0 ..^ W
6 4 5 syl W Word V L 0 W 0 ..^ L 0 ..^ W
7 6 sselda W Word V L 0 W x 0 ..^ L x 0 ..^ W
8 wrdsymbcl W Word V x 0 ..^ W W x V
9 2 7 8 syl2anc W Word V L 0 W x 0 ..^ L W x V
10 1 9 fmpt3d W Word V L 0 W W prefix L : 0 ..^ L V