Metamath Proof Explorer


Theorem pfxfvlsw

Description: The last symbol in a nonempty prefix of a word. (Contributed by Alexander van der Vekens, 24-Jun-2018) (Revised by AV, 3-May-2020)

Ref Expression
Assertion pfxfvlsw W Word V L 1 W lastS W prefix L = W L 1

Proof

Step Hyp Ref Expression
1 pfxcl W Word V W prefix L Word V
2 1 adantr W Word V L 1 W W prefix L Word V
3 lsw W prefix L Word V lastS W prefix L = W prefix L W prefix L 1
4 2 3 syl W Word V L 1 W lastS W prefix L = W prefix L W prefix L 1
5 fz1ssfz0 1 W 0 W
6 5 sseli L 1 W L 0 W
7 pfxlen W Word V L 0 W W prefix L = L
8 6 7 sylan2 W Word V L 1 W W prefix L = L
9 8 fvoveq1d W Word V L 1 W W prefix L W prefix L 1 = W prefix L L 1
10 simpl W Word V L 1 W W Word V
11 6 adantl W Word V L 1 W L 0 W
12 elfznn L 1 W L
13 fzo0end L L 1 0 ..^ L
14 12 13 syl L 1 W L 1 0 ..^ L
15 14 adantl W Word V L 1 W L 1 0 ..^ L
16 pfxfv W Word V L 0 W L 1 0 ..^ L W prefix L L 1 = W L 1
17 10 11 15 16 syl3anc W Word V L 1 W W prefix L L 1 = W L 1
18 4 9 17 3eqtrd W Word V L 1 W lastS W prefix L = W L 1