Metamath Proof Explorer


Theorem pfxid

Description: A word is a prefix of itself. (Contributed by Stefan O'Rear, 16-Aug-2015) (Revised by AV, 2-May-2020)

Ref Expression
Assertion pfxid S Word A S prefix S = S

Proof

Step Hyp Ref Expression
1 lencl S Word A S 0
2 nn0fz0 S 0 S 0 S
3 1 2 sylib S Word A S 0 S
4 pfxf S Word A S 0 S S prefix S : 0 ..^ S A
5 3 4 mpdan S Word A S prefix S : 0 ..^ S A
6 5 ffnd S Word A S prefix S Fn 0 ..^ S
7 wrdfn S Word A S Fn 0 ..^ S
8 simpl S Word A x 0 ..^ S S Word A
9 3 adantr S Word A x 0 ..^ S S 0 S
10 simpr S Word A x 0 ..^ S x 0 ..^ S
11 pfxfv S Word A S 0 S x 0 ..^ S S prefix S x = S x
12 8 9 10 11 syl3anc S Word A x 0 ..^ S S prefix S x = S x
13 6 7 12 eqfnfvd S Word A S prefix S = S