Metamath Proof Explorer


Theorem pfxlen

Description: Length of a prefix. (Contributed by Stefan O'Rear, 24-Aug-2015) (Revised by AV, 2-May-2020)

Ref Expression
Assertion pfxlen S Word A L 0 S S prefix L = L

Proof

Step Hyp Ref Expression
1 pfxfn S Word A L 0 S S prefix L Fn 0 ..^ L
2 hashfn S prefix L Fn 0 ..^ L S prefix L = 0 ..^ L
3 1 2 syl S Word A L 0 S S prefix L = 0 ..^ L
4 elfznn0 L 0 S L 0
5 4 adantl S Word A L 0 S L 0
6 hashfzo0 L 0 0 ..^ L = L
7 5 6 syl S Word A L 0 S 0 ..^ L = L
8 3 7 eqtrd S Word A L 0 S S prefix L = L