Step |
Hyp |
Ref |
Expression |
1 |
|
pfxlsw2ccat.n |
|
2 |
|
simpl |
|
3 |
|
simpr |
|
4 |
3 1
|
breqtrdi |
|
5 |
|
wrdlenge2n0 |
|
6 |
2 4 5
|
syl2anc |
|
7 |
|
pfxlswccat |
|
8 |
2 6 7
|
syl2anc |
|
9 |
|
lsw |
|
10 |
1
|
oveq1i |
|
11 |
10
|
fveq2i |
|
12 |
9 11
|
eqtr4di |
|
13 |
2 12
|
syl |
|
14 |
13
|
s1eqd |
|
15 |
14
|
oveq2d |
|
16 |
8 15
|
eqtr3d |
|
17 |
|
pfxcl |
|
18 |
2 17
|
syl |
|
19 |
|
lencl |
|
20 |
2 19
|
syl |
|
21 |
1 20
|
eqeltrid |
|
22 |
|
nn0ge2m1nn |
|
23 |
21 3 22
|
syl2anc |
|
24 |
10 23
|
eqeltrrid |
|
25 |
20
|
nn0red |
|
26 |
25
|
lem1d |
|
27 |
|
pfxn0 |
|
28 |
2 24 26 27
|
syl3anc |
|
29 |
|
pfxlswccat |
|
30 |
18 28 29
|
syl2anc |
|
31 |
|
ige2m1fz |
|
32 |
20 4 31
|
syl2anc |
|
33 |
|
pfxlen |
|
34 |
2 32 33
|
syl2anc |
|
35 |
34
|
oveq1d |
|
36 |
|
0zd |
|
37 |
|
nn0ge2m1nn0 |
|
38 |
21 3 37
|
syl2anc |
|
39 |
10 38
|
eqeltrrid |
|
40 |
39
|
nn0zd |
|
41 |
|
1zzd |
|
42 |
40 41
|
zsubcld |
|
43 |
|
2nn0 |
|
44 |
43
|
a1i |
|
45 |
|
nn0sub |
|
46 |
45
|
biimpa |
|
47 |
44 21 3 46
|
syl21anc |
|
48 |
47
|
nn0ge0d |
|
49 |
21
|
nn0cnd |
|
50 |
|
sub1m1 |
|
51 |
49 50
|
syl |
|
52 |
48 51
|
breqtrrd |
|
53 |
10
|
oveq1i |
|
54 |
52 53
|
breqtrdi |
|
55 |
24
|
nnred |
|
56 |
55
|
lem1d |
|
57 |
36 40 42 54 56
|
elfzd |
|
58 |
35 57
|
eqeltrd |
|
59 |
|
pfxpfx |
|
60 |
2 32 58 59
|
syl3anc |
|
61 |
34 10
|
eqtr4di |
|
62 |
61
|
oveq1d |
|
63 |
62 51
|
eqtrd |
|
64 |
63
|
oveq2d |
|
65 |
60 64
|
eqtrd |
|
66 |
|
pfxtrcfvl |
|
67 |
2 4 66
|
syl2anc |
|
68 |
1
|
a1i |
|
69 |
68
|
fvoveq1d |
|
70 |
67 69
|
eqtr4d |
|
71 |
70
|
s1eqd |
|
72 |
65 71
|
oveq12d |
|
73 |
30 72
|
eqtr3d |
|
74 |
73
|
oveq1d |
|
75 |
|
pfxcl |
|
76 |
2 75
|
syl |
|
77 |
|
ccatw2s1ccatws2 |
|
78 |
76 77
|
syl |
|
79 |
16 74 78
|
3eqtrd |
|