Metamath Proof Explorer


Theorem pfxlswccat

Description: Reconstruct a nonempty word from its prefix and last symbol. (Contributed by Alexander van der Vekens, 5-Aug-2018) (Revised by AV, 9-May-2020)

Ref Expression
Assertion pfxlswccat W Word V W W prefix W 1 ++ ⟨“ lastS W ”⟩ = W

Proof

Step Hyp Ref Expression
1 swrdlsw W Word V W W substr W 1 W = ⟨“ lastS W ”⟩
2 1 eqcomd W Word V W ⟨“ lastS W ”⟩ = W substr W 1 W
3 2 oveq2d W Word V W W prefix W 1 ++ ⟨“ lastS W ”⟩ = W prefix W 1 ++ W substr W 1 W
4 wrdfin W Word V W Fin
5 1elfz0hash W Fin W 1 0 W
6 4 5 sylan W Word V W 1 0 W
7 fznn0sub2 1 0 W W 1 0 W
8 6 7 syl W Word V W W 1 0 W
9 pfxcctswrd W Word V W 1 0 W W prefix W 1 ++ W substr W 1 W = W
10 8 9 syldan W Word V W W prefix W 1 ++ W substr W 1 W = W
11 3 10 eqtrd W Word V W W prefix W 1 ++ ⟨“ lastS W ”⟩ = W