Metamath Proof Explorer


Theorem pfxn0

Description: A prefix consisting of at least one symbol is not empty. (Contributed by Alexander van der Vekens, 4-Aug-2018) (Revised by AV, 2-May-2020)

Ref Expression
Assertion pfxn0 W Word V L L W W prefix L

Proof

Step Hyp Ref Expression
1 lbfzo0 0 0 ..^ L L
2 ne0i 0 0 ..^ L 0 ..^ L
3 1 2 sylbir L 0 ..^ L
4 3 3ad2ant2 W Word V L L W 0 ..^ L
5 simp1 W Word V L L W W Word V
6 nnnn0 L L 0
7 6 3ad2ant2 W Word V L L W L 0
8 lencl W Word V W 0
9 8 3ad2ant1 W Word V L L W W 0
10 simp3 W Word V L L W L W
11 elfz2nn0 L 0 W L 0 W 0 L W
12 7 9 10 11 syl3anbrc W Word V L L W L 0 W
13 pfxf W Word V L 0 W W prefix L : 0 ..^ L V
14 5 12 13 syl2anc W Word V L L W W prefix L : 0 ..^ L V
15 f0dom0 W prefix L : 0 ..^ L V 0 ..^ L = W prefix L =
16 15 bicomd W prefix L : 0 ..^ L V W prefix L = 0 ..^ L =
17 14 16 syl W Word V L L W W prefix L = 0 ..^ L =
18 17 necon3bid W Word V L L W W prefix L 0 ..^ L
19 4 18 mpbird W Word V L L W W prefix L