Metamath Proof Explorer


Theorem pfxnd

Description: The value of a prefix operation for a length argument larger than the word length is the empty set. (This is due to our definition of function values for out-of-domain arguments, see ndmfv ). (Contributed by AV, 3-May-2020)

Ref Expression
Assertion pfxnd W Word V L 0 W < L W prefix L =

Proof

Step Hyp Ref Expression
1 pfxval W Word V L 0 W prefix L = W substr 0 L
2 1 3adant3 W Word V L 0 W < L W prefix L = W substr 0 L
3 simp1 W Word V L 0 W < L W Word V
4 0zd W Word V L 0 W < L 0
5 nn0z L 0 L
6 5 3ad2ant2 W Word V L 0 W < L L
7 3 4 6 3jca W Word V L 0 W < L W Word V 0 L
8 3mix3 W < L 0 < 0 L 0 W < L
9 8 3ad2ant3 W Word V L 0 W < L 0 < 0 L 0 W < L
10 swrdnd W Word V 0 L 0 < 0 L 0 W < L W substr 0 L =
11 7 9 10 sylc W Word V L 0 W < L W substr 0 L =
12 2 11 eqtrd W Word V L 0 W < L W prefix L =