Metamath Proof Explorer


Theorem pfxnd0

Description: The value of a prefix operation for a length argument not in the range of the word length is the empty set. (This is due to our definition of function values for out-of-domain arguments, see ndmfv ). (Contributed by AV, 3-Dec-2022)

Ref Expression
Assertion pfxnd0 W Word V L 0 W W prefix L =

Proof

Step Hyp Ref Expression
1 df-nel L 0 W ¬ L 0 W
2 1 a1i W Word V L 0 W ¬ L 0 W
3 elfz2nn0 L 0 W L 0 W 0 L W
4 3 a1i W Word V L 0 W L 0 W 0 L W
5 4 notbid W Word V ¬ L 0 W ¬ L 0 W 0 L W
6 3ianor ¬ L 0 W 0 L W ¬ L 0 ¬ W 0 ¬ L W
7 6 a1i W Word V ¬ L 0 W 0 L W ¬ L 0 ¬ W 0 ¬ L W
8 2 5 7 3bitrd W Word V L 0 W ¬ L 0 ¬ W 0 ¬ L W
9 3orrot ¬ L 0 ¬ W 0 ¬ L W ¬ W 0 ¬ L W ¬ L 0
10 3orass ¬ W 0 ¬ L W ¬ L 0 ¬ W 0 ¬ L W ¬ L 0
11 lencl W Word V W 0
12 11 pm2.24d W Word V ¬ W 0 W prefix L =
13 12 com12 ¬ W 0 W Word V W prefix L =
14 simpr W V L 0 L 0
15 pfxnndmnd ¬ W V L 0 W prefix L =
16 14 15 nsyl5 ¬ L 0 W prefix L =
17 16 a1d ¬ L 0 W Word V W prefix L =
18 notnotb L 0 ¬ ¬ L 0
19 11 nn0red W Word V W
20 nn0re L 0 L
21 ltnle W L W < L ¬ L W
22 19 20 21 syl2an W Word V L 0 W < L ¬ L W
23 pfxnd W Word V L 0 W < L W prefix L =
24 23 3expia W Word V L 0 W < L W prefix L =
25 22 24 sylbird W Word V L 0 ¬ L W W prefix L =
26 25 expcom L 0 W Word V ¬ L W W prefix L =
27 26 com23 L 0 ¬ L W W Word V W prefix L =
28 18 27 sylbir ¬ ¬ L 0 ¬ L W W Word V W prefix L =
29 28 imp ¬ ¬ L 0 ¬ L W W Word V W prefix L =
30 17 29 jaoi3 ¬ L 0 ¬ L W W Word V W prefix L =
31 30 orcoms ¬ L W ¬ L 0 W Word V W prefix L =
32 13 31 jaoi ¬ W 0 ¬ L W ¬ L 0 W Word V W prefix L =
33 10 32 sylbi ¬ W 0 ¬ L W ¬ L 0 W Word V W prefix L =
34 9 33 sylbi ¬ L 0 ¬ W 0 ¬ L W W Word V W prefix L =
35 34 com12 W Word V ¬ L 0 ¬ W 0 ¬ L W W prefix L =
36 8 35 sylbid W Word V L 0 W W prefix L =
37 36 imp W Word V L 0 W W prefix L =