Metamath Proof Explorer


Theorem pfxtrcfv

Description: A symbol in a word truncated by one symbol. (Contributed by Alexander van der Vekens, 16-Jun-2018) (Revised by AV, 3-May-2020)

Ref Expression
Assertion pfxtrcfv W Word V W I 0 ..^ W 1 W prefix W 1 I = W I

Proof

Step Hyp Ref Expression
1 wrdfin W Word V W Fin
2 1elfz0hash W Fin W 1 0 W
3 1 2 sylan W Word V W 1 0 W
4 lennncl W Word V W W
5 elfz1end W W 1 W
6 4 5 sylib W Word V W W 1 W
7 3 6 jca W Word V W 1 0 W W 1 W
8 7 3adant3 W Word V W I 0 ..^ W 1 1 0 W W 1 W
9 fz0fzdiffz0 1 0 W W 1 W W 1 0 W
10 8 9 syl W Word V W I 0 ..^ W 1 W 1 0 W
11 pfxfv W Word V W 1 0 W I 0 ..^ W 1 W prefix W 1 I = W I
12 10 11 syld3an2 W Word V W I 0 ..^ W 1 W prefix W 1 I = W I