Metamath Proof Explorer


Theorem pfxtrcfv0

Description: The first symbol in a word truncated by one symbol. (Contributed by Alexander van der Vekens, 16-Jun-2018) (Revised by AV, 3-May-2020)

Ref Expression
Assertion pfxtrcfv0 W Word V 2 W W prefix W 1 0 = W 0

Proof

Step Hyp Ref Expression
1 simpl W Word V 2 W W Word V
2 wrdlenge2n0 W Word V 2 W W
3 2z 2
4 3 a1i W Word V 2 W 2
5 lencl W Word V W 0
6 5 nn0zd W Word V W
7 6 adantr W Word V 2 W W
8 simpr W Word V 2 W 2 W
9 eluz2 W 2 2 W 2 W
10 4 7 8 9 syl3anbrc W Word V 2 W W 2
11 uz2m1nn W 2 W 1
12 10 11 syl W Word V 2 W W 1
13 lbfzo0 0 0 ..^ W 1 W 1
14 12 13 sylibr W Word V 2 W 0 0 ..^ W 1
15 pfxtrcfv W Word V W 0 0 ..^ W 1 W prefix W 1 0 = W 0
16 1 2 14 15 syl3anc W Word V 2 W W prefix W 1 0 = W 0