Database
REAL AND COMPLEX NUMBERS
Words over a set
Prefixes of a word
pfxval
Next ⟩
pfx00
Metamath Proof Explorer
Ascii
Unicode
Theorem
pfxval
Description:
Value of a prefix operation.
(Contributed by
AV
, 2-May-2020)
Ref
Expression
Assertion
pfxval
⊢
S
∈
V
∧
L
∈
ℕ
0
→
S
prefix
L
=
S
substr
0
L
Proof
Step
Hyp
Ref
Expression
1
df-pfx
⊢
prefix
=
s
∈
V
,
l
∈
ℕ
0
⟼
s
substr
0
l
2
1
a1i
⊢
S
∈
V
∧
L
∈
ℕ
0
→
prefix
=
s
∈
V
,
l
∈
ℕ
0
⟼
s
substr
0
l
3
simpl
⊢
s
=
S
∧
l
=
L
→
s
=
S
4
opeq2
⊢
l
=
L
→
0
l
=
0
L
5
4
adantl
⊢
s
=
S
∧
l
=
L
→
0
l
=
0
L
6
3
5
oveq12d
⊢
s
=
S
∧
l
=
L
→
s
substr
0
l
=
S
substr
0
L
7
6
adantl
⊢
S
∈
V
∧
L
∈
ℕ
0
∧
s
=
S
∧
l
=
L
→
s
substr
0
l
=
S
substr
0
L
8
elex
⊢
S
∈
V
→
S
∈
V
9
8
adantr
⊢
S
∈
V
∧
L
∈
ℕ
0
→
S
∈
V
10
simpr
⊢
S
∈
V
∧
L
∈
ℕ
0
→
L
∈
ℕ
0
11
ovexd
⊢
S
∈
V
∧
L
∈
ℕ
0
→
S
substr
0
L
∈
V
12
2
7
9
10
11
ovmpod
⊢
S
∈
V
∧
L
∈
ℕ
0
→
S
prefix
L
=
S
substr
0
L