Metamath Proof Explorer


Theorem pgpfac

Description: Full factorization of a finite abelian p-group, by iterating pgpfac1 . There is a direct product decomposition of any abelian group of prime-power order into cyclic subgroups. (Contributed by Mario Carneiro, 27-Apr-2016) (Revised by Mario Carneiro, 3-May-2016)

Ref Expression
Hypotheses pgpfac.b B = Base G
pgpfac.c C = r SubGrp G | G 𝑠 r CycGrp ran pGrp
pgpfac.g φ G Abel
pgpfac.p φ P pGrp G
pgpfac.f φ B Fin
Assertion pgpfac φ s Word C G dom DProd s G DProd s = B

Proof

Step Hyp Ref Expression
1 pgpfac.b B = Base G
2 pgpfac.c C = r SubGrp G | G 𝑠 r CycGrp ran pGrp
3 pgpfac.g φ G Abel
4 pgpfac.p φ P pGrp G
5 pgpfac.f φ B Fin
6 ablgrp G Abel G Grp
7 1 subgid G Grp B SubGrp G
8 3 6 7 3syl φ B SubGrp G
9 eleq1 t = u t SubGrp G u SubGrp G
10 eqeq2 t = u G DProd s = t G DProd s = u
11 10 anbi2d t = u G dom DProd s G DProd s = t G dom DProd s G DProd s = u
12 11 rexbidv t = u s Word C G dom DProd s G DProd s = t s Word C G dom DProd s G DProd s = u
13 9 12 imbi12d t = u t SubGrp G s Word C G dom DProd s G DProd s = t u SubGrp G s Word C G dom DProd s G DProd s = u
14 13 imbi2d t = u φ t SubGrp G s Word C G dom DProd s G DProd s = t φ u SubGrp G s Word C G dom DProd s G DProd s = u
15 eleq1 t = B t SubGrp G B SubGrp G
16 eqeq2 t = B G DProd s = t G DProd s = B
17 16 anbi2d t = B G dom DProd s G DProd s = t G dom DProd s G DProd s = B
18 17 rexbidv t = B s Word C G dom DProd s G DProd s = t s Word C G dom DProd s G DProd s = B
19 15 18 imbi12d t = B t SubGrp G s Word C G dom DProd s G DProd s = t B SubGrp G s Word C G dom DProd s G DProd s = B
20 19 imbi2d t = B φ t SubGrp G s Word C G dom DProd s G DProd s = t φ B SubGrp G s Word C G dom DProd s G DProd s = B
21 bi2.04 t u t SubGrp G s Word C G dom DProd s G DProd s = t t SubGrp G t u s Word C G dom DProd s G DProd s = t
22 21 imbi2i φ t u t SubGrp G s Word C G dom DProd s G DProd s = t φ t SubGrp G t u s Word C G dom DProd s G DProd s = t
23 bi2.04 t u φ t SubGrp G s Word C G dom DProd s G DProd s = t φ t u t SubGrp G s Word C G dom DProd s G DProd s = t
24 bi2.04 t SubGrp G φ t u s Word C G dom DProd s G DProd s = t φ t SubGrp G t u s Word C G dom DProd s G DProd s = t
25 22 23 24 3bitr4i t u φ t SubGrp G s Word C G dom DProd s G DProd s = t t SubGrp G φ t u s Word C G dom DProd s G DProd s = t
26 25 albii t t u φ t SubGrp G s Word C G dom DProd s G DProd s = t t t SubGrp G φ t u s Word C G dom DProd s G DProd s = t
27 df-ral t SubGrp G φ t u s Word C G dom DProd s G DProd s = t t t SubGrp G φ t u s Word C G dom DProd s G DProd s = t
28 r19.21v t SubGrp G φ t u s Word C G dom DProd s G DProd s = t φ t SubGrp G t u s Word C G dom DProd s G DProd s = t
29 26 27 28 3bitr2i t t u φ t SubGrp G s Word C G dom DProd s G DProd s = t φ t SubGrp G t u s Word C G dom DProd s G DProd s = t
30 3 adantr φ t SubGrp G t u s Word C G dom DProd s G DProd s = t u SubGrp G G Abel
31 4 adantr φ t SubGrp G t u s Word C G dom DProd s G DProd s = t u SubGrp G P pGrp G
32 5 adantr φ t SubGrp G t u s Word C G dom DProd s G DProd s = t u SubGrp G B Fin
33 simprr φ t SubGrp G t u s Word C G dom DProd s G DProd s = t u SubGrp G u SubGrp G
34 simprl φ t SubGrp G t u s Word C G dom DProd s G DProd s = t u SubGrp G t SubGrp G t u s Word C G dom DProd s G DProd s = t
35 psseq1 t = x t u x u
36 eqeq2 t = x G DProd s = t G DProd s = x
37 36 anbi2d t = x G dom DProd s G DProd s = t G dom DProd s G DProd s = x
38 37 rexbidv t = x s Word C G dom DProd s G DProd s = t s Word C G dom DProd s G DProd s = x
39 35 38 imbi12d t = x t u s Word C G dom DProd s G DProd s = t x u s Word C G dom DProd s G DProd s = x
40 39 cbvralvw t SubGrp G t u s Word C G dom DProd s G DProd s = t x SubGrp G x u s Word C G dom DProd s G DProd s = x
41 34 40 sylib φ t SubGrp G t u s Word C G dom DProd s G DProd s = t u SubGrp G x SubGrp G x u s Word C G dom DProd s G DProd s = x
42 1 2 30 31 32 33 41 pgpfaclem3 φ t SubGrp G t u s Word C G dom DProd s G DProd s = t u SubGrp G s Word C G dom DProd s G DProd s = u
43 42 exp32 φ t SubGrp G t u s Word C G dom DProd s G DProd s = t u SubGrp G s Word C G dom DProd s G DProd s = u
44 43 a1i u Fin φ t SubGrp G t u s Word C G dom DProd s G DProd s = t u SubGrp G s Word C G dom DProd s G DProd s = u
45 44 a2d u Fin φ t SubGrp G t u s Word C G dom DProd s G DProd s = t φ u SubGrp G s Word C G dom DProd s G DProd s = u
46 29 45 syl5bi u Fin t t u φ t SubGrp G s Word C G dom DProd s G DProd s = t φ u SubGrp G s Word C G dom DProd s G DProd s = u
47 14 20 46 findcard3 B Fin φ B SubGrp G s Word C G dom DProd s G DProd s = B
48 5 47 mpcom φ B SubGrp G s Word C G dom DProd s G DProd s = B
49 8 48 mpd φ s Word C G dom DProd s G DProd s = B