Metamath Proof Explorer


Theorem pgpfac1

Description: Factorization of a finite abelian p-group. There is a direct product decomposition of any abelian group of prime-power order where one of the factors is cyclic and generated by an element of maximal order. (Contributed by Mario Carneiro, 27-Apr-2016)

Ref Expression
Hypotheses pgpfac1.k K = mrCls SubGrp G
pgpfac1.s S = K A
pgpfac1.b B = Base G
pgpfac1.o O = od G
pgpfac1.e E = gEx G
pgpfac1.z 0 ˙ = 0 G
pgpfac1.l ˙ = LSSum G
pgpfac1.p φ P pGrp G
pgpfac1.g φ G Abel
pgpfac1.n φ B Fin
pgpfac1.oe φ O A = E
pgpfac1.ab φ A B
Assertion pgpfac1 φ t SubGrp G S t = 0 ˙ S ˙ t = B

Proof

Step Hyp Ref Expression
1 pgpfac1.k K = mrCls SubGrp G
2 pgpfac1.s S = K A
3 pgpfac1.b B = Base G
4 pgpfac1.o O = od G
5 pgpfac1.e E = gEx G
6 pgpfac1.z 0 ˙ = 0 G
7 pgpfac1.l ˙ = LSSum G
8 pgpfac1.p φ P pGrp G
9 pgpfac1.g φ G Abel
10 pgpfac1.n φ B Fin
11 pgpfac1.oe φ O A = E
12 pgpfac1.ab φ A B
13 ablgrp G Abel G Grp
14 3 subgid G Grp B SubGrp G
15 9 13 14 3syl φ B SubGrp G
16 eleq1 s = u s SubGrp G u SubGrp G
17 eleq2 s = u A s A u
18 16 17 anbi12d s = u s SubGrp G A s u SubGrp G A u
19 eqeq2 s = u S ˙ t = s S ˙ t = u
20 19 anbi2d s = u S t = 0 ˙ S ˙ t = s S t = 0 ˙ S ˙ t = u
21 20 rexbidv s = u t SubGrp G S t = 0 ˙ S ˙ t = s t SubGrp G S t = 0 ˙ S ˙ t = u
22 18 21 imbi12d s = u s SubGrp G A s t SubGrp G S t = 0 ˙ S ˙ t = s u SubGrp G A u t SubGrp G S t = 0 ˙ S ˙ t = u
23 22 imbi2d s = u φ s SubGrp G A s t SubGrp G S t = 0 ˙ S ˙ t = s φ u SubGrp G A u t SubGrp G S t = 0 ˙ S ˙ t = u
24 eleq1 s = B s SubGrp G B SubGrp G
25 eleq2 s = B A s A B
26 24 25 anbi12d s = B s SubGrp G A s B SubGrp G A B
27 eqeq2 s = B S ˙ t = s S ˙ t = B
28 27 anbi2d s = B S t = 0 ˙ S ˙ t = s S t = 0 ˙ S ˙ t = B
29 28 rexbidv s = B t SubGrp G S t = 0 ˙ S ˙ t = s t SubGrp G S t = 0 ˙ S ˙ t = B
30 26 29 imbi12d s = B s SubGrp G A s t SubGrp G S t = 0 ˙ S ˙ t = s B SubGrp G A B t SubGrp G S t = 0 ˙ S ˙ t = B
31 30 imbi2d s = B φ s SubGrp G A s t SubGrp G S t = 0 ˙ S ˙ t = s φ B SubGrp G A B t SubGrp G S t = 0 ˙ S ˙ t = B
32 bi2.04 s u s SubGrp G A s t SubGrp G S t = 0 ˙ S ˙ t = s s SubGrp G s u A s t SubGrp G S t = 0 ˙ S ˙ t = s
33 impexp s SubGrp G A s t SubGrp G S t = 0 ˙ S ˙ t = s s SubGrp G A s t SubGrp G S t = 0 ˙ S ˙ t = s
34 33 imbi2i s u s SubGrp G A s t SubGrp G S t = 0 ˙ S ˙ t = s s u s SubGrp G A s t SubGrp G S t = 0 ˙ S ˙ t = s
35 impexp s u A s t SubGrp G S t = 0 ˙ S ˙ t = s s u A s t SubGrp G S t = 0 ˙ S ˙ t = s
36 35 imbi2i s SubGrp G s u A s t SubGrp G S t = 0 ˙ S ˙ t = s s SubGrp G s u A s t SubGrp G S t = 0 ˙ S ˙ t = s
37 32 34 36 3bitr4i s u s SubGrp G A s t SubGrp G S t = 0 ˙ S ˙ t = s s SubGrp G s u A s t SubGrp G S t = 0 ˙ S ˙ t = s
38 37 imbi2i φ s u s SubGrp G A s t SubGrp G S t = 0 ˙ S ˙ t = s φ s SubGrp G s u A s t SubGrp G S t = 0 ˙ S ˙ t = s
39 bi2.04 s u φ s SubGrp G A s t SubGrp G S t = 0 ˙ S ˙ t = s φ s u s SubGrp G A s t SubGrp G S t = 0 ˙ S ˙ t = s
40 bi2.04 s SubGrp G φ s u A s t SubGrp G S t = 0 ˙ S ˙ t = s φ s SubGrp G s u A s t SubGrp G S t = 0 ˙ S ˙ t = s
41 38 39 40 3bitr4i s u φ s SubGrp G A s t SubGrp G S t = 0 ˙ S ˙ t = s s SubGrp G φ s u A s t SubGrp G S t = 0 ˙ S ˙ t = s
42 41 albii s s u φ s SubGrp G A s t SubGrp G S t = 0 ˙ S ˙ t = s s s SubGrp G φ s u A s t SubGrp G S t = 0 ˙ S ˙ t = s
43 df-ral s SubGrp G φ s u A s t SubGrp G S t = 0 ˙ S ˙ t = s s s SubGrp G φ s u A s t SubGrp G S t = 0 ˙ S ˙ t = s
44 r19.21v s SubGrp G φ s u A s t SubGrp G S t = 0 ˙ S ˙ t = s φ s SubGrp G s u A s t SubGrp G S t = 0 ˙ S ˙ t = s
45 42 43 44 3bitr2i s s u φ s SubGrp G A s t SubGrp G S t = 0 ˙ S ˙ t = s φ s SubGrp G s u A s t SubGrp G S t = 0 ˙ S ˙ t = s
46 psseq1 x = s x u s u
47 eleq2 x = s A x A s
48 46 47 anbi12d x = s x u A x s u A s
49 ineq2 y = t S y = S t
50 49 eqeq1d y = t S y = 0 ˙ S t = 0 ˙
51 oveq2 y = t S ˙ y = S ˙ t
52 51 eqeq1d y = t S ˙ y = x S ˙ t = x
53 50 52 anbi12d y = t S y = 0 ˙ S ˙ y = x S t = 0 ˙ S ˙ t = x
54 53 cbvrexvw y SubGrp G S y = 0 ˙ S ˙ y = x t SubGrp G S t = 0 ˙ S ˙ t = x
55 eqeq2 x = s S ˙ t = x S ˙ t = s
56 55 anbi2d x = s S t = 0 ˙ S ˙ t = x S t = 0 ˙ S ˙ t = s
57 56 rexbidv x = s t SubGrp G S t = 0 ˙ S ˙ t = x t SubGrp G S t = 0 ˙ S ˙ t = s
58 54 57 syl5bb x = s y SubGrp G S y = 0 ˙ S ˙ y = x t SubGrp G S t = 0 ˙ S ˙ t = s
59 48 58 imbi12d x = s x u A x y SubGrp G S y = 0 ˙ S ˙ y = x s u A s t SubGrp G S t = 0 ˙ S ˙ t = s
60 59 cbvralvw x SubGrp G x u A x y SubGrp G S y = 0 ˙ S ˙ y = x s SubGrp G s u A s t SubGrp G S t = 0 ˙ S ˙ t = s
61 8 adantr φ x SubGrp G x u A x y SubGrp G S y = 0 ˙ S ˙ y = x u SubGrp G A u P pGrp G
62 9 adantr φ x SubGrp G x u A x y SubGrp G S y = 0 ˙ S ˙ y = x u SubGrp G A u G Abel
63 10 adantr φ x SubGrp G x u A x y SubGrp G S y = 0 ˙ S ˙ y = x u SubGrp G A u B Fin
64 11 adantr φ x SubGrp G x u A x y SubGrp G S y = 0 ˙ S ˙ y = x u SubGrp G A u O A = E
65 simprrl φ x SubGrp G x u A x y SubGrp G S y = 0 ˙ S ˙ y = x u SubGrp G A u u SubGrp G
66 simprrr φ x SubGrp G x u A x y SubGrp G S y = 0 ˙ S ˙ y = x u SubGrp G A u A u
67 simprl φ x SubGrp G x u A x y SubGrp G S y = 0 ˙ S ˙ y = x u SubGrp G A u x SubGrp G x u A x y SubGrp G S y = 0 ˙ S ˙ y = x
68 67 60 sylib φ x SubGrp G x u A x y SubGrp G S y = 0 ˙ S ˙ y = x u SubGrp G A u s SubGrp G s u A s t SubGrp G S t = 0 ˙ S ˙ t = s
69 1 2 3 4 5 6 7 61 62 63 64 65 66 68 pgpfac1lem5 φ x SubGrp G x u A x y SubGrp G S y = 0 ˙ S ˙ y = x u SubGrp G A u t SubGrp G S t = 0 ˙ S ˙ t = u
70 69 exp32 φ x SubGrp G x u A x y SubGrp G S y = 0 ˙ S ˙ y = x u SubGrp G A u t SubGrp G S t = 0 ˙ S ˙ t = u
71 60 70 syl5bir φ s SubGrp G s u A s t SubGrp G S t = 0 ˙ S ˙ t = s u SubGrp G A u t SubGrp G S t = 0 ˙ S ˙ t = u
72 71 a2i φ s SubGrp G s u A s t SubGrp G S t = 0 ˙ S ˙ t = s φ u SubGrp G A u t SubGrp G S t = 0 ˙ S ˙ t = u
73 45 72 sylbi s s u φ s SubGrp G A s t SubGrp G S t = 0 ˙ S ˙ t = s φ u SubGrp G A u t SubGrp G S t = 0 ˙ S ˙ t = u
74 73 a1i u Fin s s u φ s SubGrp G A s t SubGrp G S t = 0 ˙ S ˙ t = s φ u SubGrp G A u t SubGrp G S t = 0 ˙ S ˙ t = u
75 23 31 74 findcard3 B Fin φ B SubGrp G A B t SubGrp G S t = 0 ˙ S ˙ t = B
76 10 75 mpcom φ B SubGrp G A B t SubGrp G S t = 0 ˙ S ˙ t = B
77 15 12 76 mp2and φ t SubGrp G S t = 0 ˙ S ˙ t = B