Step |
Hyp |
Ref |
Expression |
1 |
|
pgpfac1.k |
|
2 |
|
pgpfac1.s |
|
3 |
|
pgpfac1.b |
|
4 |
|
pgpfac1.o |
|
5 |
|
pgpfac1.e |
|
6 |
|
pgpfac1.z |
|
7 |
|
pgpfac1.l |
|
8 |
|
pgpfac1.p |
|
9 |
|
pgpfac1.g |
|
10 |
|
pgpfac1.n |
|
11 |
|
pgpfac1.oe |
|
12 |
|
pgpfac1.u |
|
13 |
|
pgpfac1.au |
|
14 |
|
pgpfac1.w |
|
15 |
|
pgpfac1.i |
|
16 |
|
pgpfac1.ss |
|
17 |
|
pgpfac1.2 |
|
18 |
16
|
adantr |
|
19 |
|
ablgrp |
|
20 |
3
|
subgacs |
|
21 |
|
acsmre |
|
22 |
9 19 20 21
|
4syl |
|
23 |
22
|
adantr |
|
24 |
|
eldifi |
|
25 |
24
|
adantl |
|
26 |
25
|
snssd |
|
27 |
12
|
adantr |
|
28 |
1
|
mrcsscl |
|
29 |
23 26 27 28
|
syl3anc |
|
30 |
3
|
subgss |
|
31 |
12 30
|
syl |
|
32 |
31 13
|
sseldd |
|
33 |
1
|
mrcsncl |
|
34 |
22 32 33
|
syl2anc |
|
35 |
2 34
|
eqeltrid |
|
36 |
7
|
lsmsubg2 |
|
37 |
9 35 14 36
|
syl3anc |
|
38 |
37
|
adantr |
|
39 |
31
|
sselda |
|
40 |
24 39
|
sylan2 |
|
41 |
1
|
mrcsncl |
|
42 |
23 40 41
|
syl2anc |
|
43 |
7
|
lsmlub |
|
44 |
38 42 27 43
|
syl3anc |
|
45 |
18 29 44
|
mpbi2and |
|
46 |
7
|
lsmub1 |
|
47 |
38 42 46
|
syl2anc |
|
48 |
7
|
lsmub2 |
|
49 |
38 42 48
|
syl2anc |
|
50 |
40
|
snssd |
|
51 |
23 1 50
|
mrcssidd |
|
52 |
|
snssg |
|
53 |
40 52
|
syl |
|
54 |
51 53
|
mpbird |
|
55 |
49 54
|
sseldd |
|
56 |
|
eldifn |
|
57 |
56
|
adantl |
|
58 |
47 55 57
|
ssnelpssd |
|
59 |
7
|
lsmub1 |
|
60 |
35 14 59
|
syl2anc |
|
61 |
32
|
snssd |
|
62 |
22 1 61
|
mrcssidd |
|
63 |
62 2
|
sseqtrrdi |
|
64 |
|
snssg |
|
65 |
13 64
|
syl |
|
66 |
63 65
|
mpbird |
|
67 |
60 66
|
sseldd |
|
68 |
67
|
adantr |
|
69 |
47 68
|
sseldd |
|
70 |
|
psseq1 |
|
71 |
|
eleq2 |
|
72 |
70 71
|
anbi12d |
|
73 |
|
psseq2 |
|
74 |
73
|
notbid |
|
75 |
72 74
|
imbi12d |
|
76 |
17
|
adantr |
|
77 |
9
|
adantr |
|
78 |
7
|
lsmsubg2 |
|
79 |
77 38 42 78
|
syl3anc |
|
80 |
75 76 79
|
rspcdva |
|
81 |
69 80
|
mpan2d |
|
82 |
58 81
|
mt2d |
|
83 |
|
npss |
|
84 |
82 83
|
sylib |
|
85 |
45 84
|
mpd |
|