Metamath Proof Explorer


Theorem pgpfac1lem1

Description: Lemma for pgpfac1 . (Contributed by Mario Carneiro, 27-Apr-2016)

Ref Expression
Hypotheses pgpfac1.k K = mrCls SubGrp G
pgpfac1.s S = K A
pgpfac1.b B = Base G
pgpfac1.o O = od G
pgpfac1.e E = gEx G
pgpfac1.z 0 ˙ = 0 G
pgpfac1.l ˙ = LSSum G
pgpfac1.p φ P pGrp G
pgpfac1.g φ G Abel
pgpfac1.n φ B Fin
pgpfac1.oe φ O A = E
pgpfac1.u φ U SubGrp G
pgpfac1.au φ A U
pgpfac1.w φ W SubGrp G
pgpfac1.i φ S W = 0 ˙
pgpfac1.ss φ S ˙ W U
pgpfac1.2 φ w SubGrp G w U A w ¬ S ˙ W w
Assertion pgpfac1lem1 φ C U S ˙ W S ˙ W ˙ K C = U

Proof

Step Hyp Ref Expression
1 pgpfac1.k K = mrCls SubGrp G
2 pgpfac1.s S = K A
3 pgpfac1.b B = Base G
4 pgpfac1.o O = od G
5 pgpfac1.e E = gEx G
6 pgpfac1.z 0 ˙ = 0 G
7 pgpfac1.l ˙ = LSSum G
8 pgpfac1.p φ P pGrp G
9 pgpfac1.g φ G Abel
10 pgpfac1.n φ B Fin
11 pgpfac1.oe φ O A = E
12 pgpfac1.u φ U SubGrp G
13 pgpfac1.au φ A U
14 pgpfac1.w φ W SubGrp G
15 pgpfac1.i φ S W = 0 ˙
16 pgpfac1.ss φ S ˙ W U
17 pgpfac1.2 φ w SubGrp G w U A w ¬ S ˙ W w
18 16 adantr φ C U S ˙ W S ˙ W U
19 ablgrp G Abel G Grp
20 3 subgacs G Grp SubGrp G ACS B
21 acsmre SubGrp G ACS B SubGrp G Moore B
22 9 19 20 21 4syl φ SubGrp G Moore B
23 22 adantr φ C U S ˙ W SubGrp G Moore B
24 eldifi C U S ˙ W C U
25 24 adantl φ C U S ˙ W C U
26 25 snssd φ C U S ˙ W C U
27 12 adantr φ C U S ˙ W U SubGrp G
28 1 mrcsscl SubGrp G Moore B C U U SubGrp G K C U
29 23 26 27 28 syl3anc φ C U S ˙ W K C U
30 3 subgss U SubGrp G U B
31 12 30 syl φ U B
32 31 13 sseldd φ A B
33 1 mrcsncl SubGrp G Moore B A B K A SubGrp G
34 22 32 33 syl2anc φ K A SubGrp G
35 2 34 eqeltrid φ S SubGrp G
36 7 lsmsubg2 G Abel S SubGrp G W SubGrp G S ˙ W SubGrp G
37 9 35 14 36 syl3anc φ S ˙ W SubGrp G
38 37 adantr φ C U S ˙ W S ˙ W SubGrp G
39 31 sselda φ C U C B
40 24 39 sylan2 φ C U S ˙ W C B
41 1 mrcsncl SubGrp G Moore B C B K C SubGrp G
42 23 40 41 syl2anc φ C U S ˙ W K C SubGrp G
43 7 lsmlub S ˙ W SubGrp G K C SubGrp G U SubGrp G S ˙ W U K C U S ˙ W ˙ K C U
44 38 42 27 43 syl3anc φ C U S ˙ W S ˙ W U K C U S ˙ W ˙ K C U
45 18 29 44 mpbi2and φ C U S ˙ W S ˙ W ˙ K C U
46 7 lsmub1 S ˙ W SubGrp G K C SubGrp G S ˙ W S ˙ W ˙ K C
47 38 42 46 syl2anc φ C U S ˙ W S ˙ W S ˙ W ˙ K C
48 7 lsmub2 S ˙ W SubGrp G K C SubGrp G K C S ˙ W ˙ K C
49 38 42 48 syl2anc φ C U S ˙ W K C S ˙ W ˙ K C
50 40 snssd φ C U S ˙ W C B
51 23 1 50 mrcssidd φ C U S ˙ W C K C
52 snssg C B C K C C K C
53 40 52 syl φ C U S ˙ W C K C C K C
54 51 53 mpbird φ C U S ˙ W C K C
55 49 54 sseldd φ C U S ˙ W C S ˙ W ˙ K C
56 eldifn C U S ˙ W ¬ C S ˙ W
57 56 adantl φ C U S ˙ W ¬ C S ˙ W
58 47 55 57 ssnelpssd φ C U S ˙ W S ˙ W S ˙ W ˙ K C
59 7 lsmub1 S SubGrp G W SubGrp G S S ˙ W
60 35 14 59 syl2anc φ S S ˙ W
61 32 snssd φ A B
62 22 1 61 mrcssidd φ A K A
63 62 2 sseqtrrdi φ A S
64 snssg A U A S A S
65 13 64 syl φ A S A S
66 63 65 mpbird φ A S
67 60 66 sseldd φ A S ˙ W
68 67 adantr φ C U S ˙ W A S ˙ W
69 47 68 sseldd φ C U S ˙ W A S ˙ W ˙ K C
70 psseq1 w = S ˙ W ˙ K C w U S ˙ W ˙ K C U
71 eleq2 w = S ˙ W ˙ K C A w A S ˙ W ˙ K C
72 70 71 anbi12d w = S ˙ W ˙ K C w U A w S ˙ W ˙ K C U A S ˙ W ˙ K C
73 psseq2 w = S ˙ W ˙ K C S ˙ W w S ˙ W S ˙ W ˙ K C
74 73 notbid w = S ˙ W ˙ K C ¬ S ˙ W w ¬ S ˙ W S ˙ W ˙ K C
75 72 74 imbi12d w = S ˙ W ˙ K C w U A w ¬ S ˙ W w S ˙ W ˙ K C U A S ˙ W ˙ K C ¬ S ˙ W S ˙ W ˙ K C
76 17 adantr φ C U S ˙ W w SubGrp G w U A w ¬ S ˙ W w
77 9 adantr φ C U S ˙ W G Abel
78 7 lsmsubg2 G Abel S ˙ W SubGrp G K C SubGrp G S ˙ W ˙ K C SubGrp G
79 77 38 42 78 syl3anc φ C U S ˙ W S ˙ W ˙ K C SubGrp G
80 75 76 79 rspcdva φ C U S ˙ W S ˙ W ˙ K C U A S ˙ W ˙ K C ¬ S ˙ W S ˙ W ˙ K C
81 69 80 mpan2d φ C U S ˙ W S ˙ W ˙ K C U ¬ S ˙ W S ˙ W ˙ K C
82 58 81 mt2d φ C U S ˙ W ¬ S ˙ W ˙ K C U
83 npss ¬ S ˙ W ˙ K C U S ˙ W ˙ K C U S ˙ W ˙ K C = U
84 82 83 sylib φ C U S ˙ W S ˙ W ˙ K C U S ˙ W ˙ K C = U
85 45 84 mpd φ C U S ˙ W S ˙ W ˙ K C = U