Step |
Hyp |
Ref |
Expression |
1 |
|
pgpfac1.k |
|
2 |
|
pgpfac1.s |
|
3 |
|
pgpfac1.b |
|
4 |
|
pgpfac1.o |
|
5 |
|
pgpfac1.e |
|
6 |
|
pgpfac1.z |
|
7 |
|
pgpfac1.l |
|
8 |
|
pgpfac1.p |
|
9 |
|
pgpfac1.g |
|
10 |
|
pgpfac1.n |
|
11 |
|
pgpfac1.oe |
|
12 |
|
pgpfac1.u |
|
13 |
|
pgpfac1.au |
|
14 |
|
pgpfac1.w |
|
15 |
|
pgpfac1.i |
|
16 |
|
pgpfac1.ss |
|
17 |
|
pgpfac1.2 |
|
18 |
|
pgpfac1.c |
|
19 |
|
pgpfac1.mg |
|
20 |
|
pgpfac1.m |
|
21 |
|
pgpfac1.mw |
|
22 |
|
pgpfac1.d |
|
23 |
|
ablgrp |
|
24 |
9 23
|
syl |
|
25 |
3
|
subgacs |
|
26 |
|
acsmre |
|
27 |
24 25 26
|
3syl |
|
28 |
3
|
subgss |
|
29 |
12 28
|
syl |
|
30 |
18
|
eldifad |
|
31 |
29 13
|
sseldd |
|
32 |
1
|
mrcsncl |
|
33 |
27 31 32
|
syl2anc |
|
34 |
2 33
|
eqeltrid |
|
35 |
7
|
lsmub1 |
|
36 |
34 14 35
|
syl2anc |
|
37 |
36 16
|
sstrd |
|
38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
pgpfac1lem3a |
|
39 |
38
|
simprd |
|
40 |
|
pgpprm |
|
41 |
8 40
|
syl |
|
42 |
|
prmz |
|
43 |
41 42
|
syl |
|
44 |
|
prmnn |
|
45 |
41 44
|
syl |
|
46 |
45
|
nnne0d |
|
47 |
|
dvdsval2 |
|
48 |
43 46 20 47
|
syl3anc |
|
49 |
39 48
|
mpbid |
|
50 |
31
|
snssd |
|
51 |
27 1 50
|
mrcssidd |
|
52 |
51 2
|
sseqtrrdi |
|
53 |
|
snssg |
|
54 |
13 53
|
syl |
|
55 |
52 54
|
mpbird |
|
56 |
19
|
subgmulgcl |
|
57 |
34 49 55 56
|
syl3anc |
|
58 |
37 57
|
sseldd |
|
59 |
|
eqid |
|
60 |
59
|
subgcl |
|
61 |
12 30 58 60
|
syl3anc |
|
62 |
22 61
|
eqeltrid |
|
63 |
29 62
|
sseldd |
|
64 |
1
|
mrcsncl |
|
65 |
27 63 64
|
syl2anc |
|
66 |
7
|
lsmsubg2 |
|
67 |
9 14 65 66
|
syl3anc |
|
68 |
|
eqid |
|
69 |
68 7 14 65
|
lsmelvalm |
|
70 |
|
eqid |
|
71 |
3 19 70 1
|
cycsubg2 |
|
72 |
24 63 71
|
syl2anc |
|
73 |
72
|
rexeqdv |
|
74 |
|
ovex |
|
75 |
74
|
rgenw |
|
76 |
|
oveq2 |
|
77 |
76
|
eqeq2d |
|
78 |
70 77
|
rexrnmptw |
|
79 |
75 78
|
ax-mp |
|
80 |
73 79
|
bitrdi |
|
81 |
80
|
rexbidv |
|
82 |
69 81
|
bitrd |
|
83 |
82
|
adantr |
|
84 |
|
simpr |
|
85 |
14
|
ad3antrrr |
|
86 |
|
simplrl |
|
87 |
|
simplrr |
|
88 |
87
|
zcnd |
|
89 |
45
|
nncnd |
|
90 |
89
|
ad3antrrr |
|
91 |
46
|
ad3antrrr |
|
92 |
88 90 91
|
divcan1d |
|
93 |
92
|
oveq1d |
|
94 |
24
|
ad3antrrr |
|
95 |
18
|
eldifbd |
|
96 |
7
|
lsmsubg2 |
|
97 |
9 34 14 96
|
syl3anc |
|
98 |
36 57
|
sseldd |
|
99 |
68
|
subgsubcl |
|
100 |
99
|
3expia |
|
101 |
100
|
impancom |
|
102 |
97 98 101
|
syl2anc |
|
103 |
22
|
oveq1i |
|
104 |
29 30
|
sseldd |
|
105 |
3
|
subgss |
|
106 |
34 105
|
syl |
|
107 |
106 57
|
sseldd |
|
108 |
3 59 68
|
grppncan |
|
109 |
24 104 107 108
|
syl3anc |
|
110 |
103 109
|
eqtrid |
|
111 |
110
|
eleq1d |
|
112 |
102 111
|
sylibd |
|
113 |
95 112
|
mtod |
|
114 |
113
|
ad3antrrr |
|
115 |
41
|
ad3antrrr |
|
116 |
|
coprm |
|
117 |
115 87 116
|
syl2anc |
|
118 |
43
|
ad3antrrr |
|
119 |
|
bezout |
|
120 |
118 87 119
|
syl2anc |
|
121 |
|
eqeq1 |
|
122 |
121
|
2rexbidv |
|
123 |
120 122
|
syl5ibcom |
|
124 |
94
|
adantr |
|
125 |
118
|
adantr |
|
126 |
|
simprl |
|
127 |
125 126
|
zmulcld |
|
128 |
87
|
adantr |
|
129 |
|
simprr |
|
130 |
128 129
|
zmulcld |
|
131 |
63
|
ad3antrrr |
|
132 |
131
|
adantr |
|
133 |
3 19 59
|
mulgdir |
|
134 |
124 127 130 132 133
|
syl13anc |
|
135 |
97
|
ad3antrrr |
|
136 |
135
|
adantr |
|
137 |
90
|
adantr |
|
138 |
|
zcn |
|
139 |
138
|
ad2antrl |
|
140 |
137 139
|
mulcomd |
|
141 |
140
|
oveq1d |
|
142 |
3 19
|
mulgass |
|
143 |
124 126 125 132 142
|
syl13anc |
|
144 |
141 143
|
eqtrd |
|
145 |
7
|
lsmub2 |
|
146 |
34 14 145
|
syl2anc |
|
147 |
22
|
oveq2i |
|
148 |
3 19 59
|
mulgdi |
|
149 |
9 43 104 107 148
|
syl13anc |
|
150 |
147 149
|
eqtrid |
|
151 |
3 19
|
mulgass |
|
152 |
24 43 49 31 151
|
syl13anc |
|
153 |
20
|
zcnd |
|
154 |
153 89 46
|
divcan2d |
|
155 |
154
|
oveq1d |
|
156 |
152 155
|
eqtr3d |
|
157 |
156
|
oveq2d |
|
158 |
150 157
|
eqtrd |
|
159 |
158 21
|
eqeltrd |
|
160 |
146 159
|
sseldd |
|
161 |
160
|
ad3antrrr |
|
162 |
161
|
adantr |
|
163 |
19
|
subgmulgcl |
|
164 |
136 126 162 163
|
syl3anc |
|
165 |
144 164
|
eqeltrd |
|
166 |
88
|
adantr |
|
167 |
|
zcn |
|
168 |
167
|
ad2antll |
|
169 |
166 168
|
mulcomd |
|
170 |
169
|
oveq1d |
|
171 |
3 19
|
mulgass |
|
172 |
124 129 128 132 171
|
syl13anc |
|
173 |
170 172
|
eqtrd |
|
174 |
84
|
oveq2d |
|
175 |
9
|
ad3antrrr |
|
176 |
3
|
subgss |
|
177 |
85 176
|
syl |
|
178 |
177 86
|
sseldd |
|
179 |
3 19
|
mulgcl |
|
180 |
94 87 131 179
|
syl3anc |
|
181 |
3 68 175 178 180
|
ablnncan |
|
182 |
174 181
|
eqtrd |
|
183 |
146
|
ad3antrrr |
|
184 |
183 86
|
sseldd |
|
185 |
36
|
sselda |
|
186 |
185
|
ad2antrr |
|
187 |
68
|
subgsubcl |
|
188 |
135 184 186 187
|
syl3anc |
|
189 |
182 188
|
eqeltrrd |
|
190 |
189
|
adantr |
|
191 |
19
|
subgmulgcl |
|
192 |
136 129 190 191
|
syl3anc |
|
193 |
173 192
|
eqeltrd |
|
194 |
59
|
subgcl |
|
195 |
136 165 193 194
|
syl3anc |
|
196 |
134 195
|
eqeltrd |
|
197 |
|
oveq1 |
|
198 |
197
|
eleq1d |
|
199 |
196 198
|
syl5ibrcom |
|
200 |
199
|
rexlimdvva |
|
201 |
123 200
|
syld |
|
202 |
3 19
|
mulg1 |
|
203 |
131 202
|
syl |
|
204 |
203
|
eleq1d |
|
205 |
201 204
|
sylibd |
|
206 |
117 205
|
sylbid |
|
207 |
114 206
|
mt3d |
|
208 |
|
dvdsval2 |
|
209 |
118 91 87 208
|
syl3anc |
|
210 |
207 209
|
mpbid |
|
211 |
3 19
|
mulgass |
|
212 |
94 210 118 131 211
|
syl13anc |
|
213 |
93 212
|
eqtr3d |
|
214 |
159
|
ad3antrrr |
|
215 |
19
|
subgmulgcl |
|
216 |
85 210 214 215
|
syl3anc |
|
217 |
213 216
|
eqeltrd |
|
218 |
68
|
subgsubcl |
|
219 |
85 86 217 218
|
syl3anc |
|
220 |
84 219
|
eqeltrd |
|
221 |
220
|
ex |
|
222 |
221
|
rexlimdvva |
|
223 |
83 222
|
sylbid |
|
224 |
223
|
imdistanda |
|
225 |
|
elin |
|
226 |
|
elin |
|
227 |
224 225 226
|
3imtr4g |
|
228 |
227
|
ssrdv |
|
229 |
228 15
|
sseqtrd |
|
230 |
6
|
subg0cl |
|
231 |
34 230
|
syl |
|
232 |
6
|
subg0cl |
|
233 |
67 232
|
syl |
|
234 |
231 233
|
elind |
|
235 |
234
|
snssd |
|
236 |
229 235
|
eqssd |
|
237 |
7
|
lsmass |
|
238 |
34 14 65 237
|
syl3anc |
|
239 |
62 113
|
eldifd |
|
240 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
pgpfac1lem1 |
|
241 |
239 240
|
mpdan |
|
242 |
238 241
|
eqtr3d |
|
243 |
|
ineq2 |
|
244 |
243
|
eqeq1d |
|
245 |
|
oveq2 |
|
246 |
245
|
eqeq1d |
|
247 |
244 246
|
anbi12d |
|
248 |
247
|
rspcev |
|
249 |
67 236 242 248
|
syl12anc |
|