Metamath Proof Explorer


Theorem pgpfaclem2

Description: Lemma for pgpfac . (Contributed by Mario Carneiro, 27-Apr-2016) (Revised by Mario Carneiro, 3-May-2016)

Ref Expression
Hypotheses pgpfac.b B = Base G
pgpfac.c C = r SubGrp G | G 𝑠 r CycGrp ran pGrp
pgpfac.g φ G Abel
pgpfac.p φ P pGrp G
pgpfac.f φ B Fin
pgpfac.u φ U SubGrp G
pgpfac.a φ t SubGrp G t U s Word C G dom DProd s G DProd s = t
pgpfac.h H = G 𝑠 U
pgpfac.k K = mrCls SubGrp H
pgpfac.o O = od H
pgpfac.e E = gEx H
pgpfac.0 0 ˙ = 0 H
pgpfac.l ˙ = LSSum H
pgpfac.1 φ E 1
pgpfac.x φ X U
pgpfac.oe φ O X = E
pgpfac.w φ W SubGrp H
pgpfac.i φ K X W = 0 ˙
pgpfac.s φ K X ˙ W = U
Assertion pgpfaclem2 φ s Word C G dom DProd s G DProd s = U

Proof

Step Hyp Ref Expression
1 pgpfac.b B = Base G
2 pgpfac.c C = r SubGrp G | G 𝑠 r CycGrp ran pGrp
3 pgpfac.g φ G Abel
4 pgpfac.p φ P pGrp G
5 pgpfac.f φ B Fin
6 pgpfac.u φ U SubGrp G
7 pgpfac.a φ t SubGrp G t U s Word C G dom DProd s G DProd s = t
8 pgpfac.h H = G 𝑠 U
9 pgpfac.k K = mrCls SubGrp H
10 pgpfac.o O = od H
11 pgpfac.e E = gEx H
12 pgpfac.0 0 ˙ = 0 H
13 pgpfac.l ˙ = LSSum H
14 pgpfac.1 φ E 1
15 pgpfac.x φ X U
16 pgpfac.oe φ O X = E
17 pgpfac.w φ W SubGrp H
18 pgpfac.i φ K X W = 0 ˙
19 pgpfac.s φ K X ˙ W = U
20 8 subsubg U SubGrp G W SubGrp H W SubGrp G W U
21 6 20 syl φ W SubGrp H W SubGrp G W U
22 17 21 mpbid φ W SubGrp G W U
23 22 simprd φ W U
24 1 subgss U SubGrp G U B
25 6 24 syl φ U B
26 5 25 ssfid φ U Fin
27 26 23 ssfid φ W Fin
28 hashcl W Fin W 0
29 27 28 syl φ W 0
30 29 nn0red φ W
31 12 fvexi 0 ˙ V
32 hashsng 0 ˙ V 0 ˙ = 1
33 31 32 ax-mp 0 ˙ = 1
34 subgrcl W SubGrp H H Grp
35 eqid Base H = Base H
36 35 subgacs H Grp SubGrp H ACS Base H
37 acsmre SubGrp H ACS Base H SubGrp H Moore Base H
38 17 34 36 37 4syl φ SubGrp H Moore Base H
39 38 9 mrcssvd φ K X Base H
40 8 subgbas U SubGrp G U = Base H
41 6 40 syl φ U = Base H
42 39 41 sseqtrrd φ K X U
43 26 42 ssfid φ K X Fin
44 15 41 eleqtrd φ X Base H
45 9 mrcsncl SubGrp H Moore Base H X Base H K X SubGrp H
46 38 44 45 syl2anc φ K X SubGrp H
47 12 subg0cl K X SubGrp H 0 ˙ K X
48 46 47 syl φ 0 ˙ K X
49 48 snssd φ 0 ˙ K X
50 44 snssd φ X Base H
51 38 9 50 mrcssidd φ X K X
52 snssg X U X K X X K X
53 15 52 syl φ X K X X K X
54 51 53 mpbird φ X K X
55 16 14 eqnetrd φ O X 1
56 10 12 od1 H Grp O 0 ˙ = 1
57 17 34 56 3syl φ O 0 ˙ = 1
58 elsni X 0 ˙ X = 0 ˙
59 58 fveqeq2d X 0 ˙ O X = 1 O 0 ˙ = 1
60 57 59 syl5ibrcom φ X 0 ˙ O X = 1
61 60 necon3ad φ O X 1 ¬ X 0 ˙
62 55 61 mpd φ ¬ X 0 ˙
63 49 54 62 ssnelpssd φ 0 ˙ K X
64 php3 K X Fin 0 ˙ K X 0 ˙ K X
65 43 63 64 syl2anc φ 0 ˙ K X
66 snfi 0 ˙ Fin
67 hashsdom 0 ˙ Fin K X Fin 0 ˙ < K X 0 ˙ K X
68 66 43 67 sylancr φ 0 ˙ < K X 0 ˙ K X
69 65 68 mpbird φ 0 ˙ < K X
70 33 69 eqbrtrrid φ 1 < K X
71 1red φ 1
72 hashcl K X Fin K X 0
73 43 72 syl φ K X 0
74 73 nn0red φ K X
75 12 subg0cl W SubGrp H 0 ˙ W
76 ne0i 0 ˙ W W
77 17 75 76 3syl φ W
78 hashnncl W Fin W W
79 27 78 syl φ W W
80 77 79 mpbird φ W
81 80 nngt0d φ 0 < W
82 ltmul1 1 K X W 0 < W 1 < K X 1 W < K X W
83 71 74 30 81 82 syl112anc φ 1 < K X 1 W < K X W
84 70 83 mpbid φ 1 W < K X W
85 30 recnd φ W
86 85 mulid2d φ 1 W = W
87 eqid Cntz H = Cntz H
88 8 subgabl G Abel U SubGrp G H Abel
89 3 6 88 syl2anc φ H Abel
90 87 89 46 17 ablcntzd φ K X Cntz H W
91 13 12 87 46 17 18 90 43 27 lsmhash φ K X ˙ W = K X W
92 19 fveq2d φ K X ˙ W = U
93 91 92 eqtr3d φ K X W = U
94 84 86 93 3brtr3d φ W < U
95 30 94 ltned φ W U
96 fveq2 W = U W = U
97 96 necon3i W U W U
98 95 97 syl φ W U
99 df-pss W U W U W U
100 23 98 99 sylanbrc φ W U
101 psseq1 t = W t U W U
102 eqeq2 t = W G DProd s = t G DProd s = W
103 102 anbi2d t = W G dom DProd s G DProd s = t G dom DProd s G DProd s = W
104 103 rexbidv t = W s Word C G dom DProd s G DProd s = t s Word C G dom DProd s G DProd s = W
105 101 104 imbi12d t = W t U s Word C G dom DProd s G DProd s = t W U s Word C G dom DProd s G DProd s = W
106 22 simpld φ W SubGrp G
107 105 7 106 rspcdva φ W U s Word C G dom DProd s G DProd s = W
108 100 107 mpd φ s Word C G dom DProd s G DProd s = W
109 breq2 s = a G dom DProd s G dom DProd a
110 oveq2 s = a G DProd s = G DProd a
111 110 eqeq1d s = a G DProd s = W G DProd a = W
112 109 111 anbi12d s = a G dom DProd s G DProd s = W G dom DProd a G DProd a = W
113 112 cbvrexvw s Word C G dom DProd s G DProd s = W a Word C G dom DProd a G DProd a = W
114 108 113 sylib φ a Word C G dom DProd a G DProd a = W
115 3 adantr φ a Word C G dom DProd a G DProd a = W G Abel
116 4 adantr φ a Word C G dom DProd a G DProd a = W P pGrp G
117 5 adantr φ a Word C G dom DProd a G DProd a = W B Fin
118 6 adantr φ a Word C G dom DProd a G DProd a = W U SubGrp G
119 7 adantr φ a Word C G dom DProd a G DProd a = W t SubGrp G t U s Word C G dom DProd s G DProd s = t
120 14 adantr φ a Word C G dom DProd a G DProd a = W E 1
121 15 adantr φ a Word C G dom DProd a G DProd a = W X U
122 16 adantr φ a Word C G dom DProd a G DProd a = W O X = E
123 17 adantr φ a Word C G dom DProd a G DProd a = W W SubGrp H
124 18 adantr φ a Word C G dom DProd a G DProd a = W K X W = 0 ˙
125 19 adantr φ a Word C G dom DProd a G DProd a = W K X ˙ W = U
126 simprl φ a Word C G dom DProd a G DProd a = W a Word C
127 simprrl φ a Word C G dom DProd a G DProd a = W G dom DProd a
128 simprrr φ a Word C G dom DProd a G DProd a = W G DProd a = W
129 eqid a ++ ⟨“ K X ”⟩ = a ++ ⟨“ K X ”⟩
130 1 2 115 116 117 118 119 8 9 10 11 12 13 120 121 122 123 124 125 126 127 128 129 pgpfaclem1 φ a Word C G dom DProd a G DProd a = W s Word C G dom DProd s G DProd s = U
131 114 130 rexlimddv φ s Word C G dom DProd s G DProd s = U