Metamath Proof Explorer


Theorem pgpfaclem3

Description: Lemma for pgpfac . (Contributed by Mario Carneiro, 27-Apr-2016) (Revised by Mario Carneiro, 3-May-2016)

Ref Expression
Hypotheses pgpfac.b B = Base G
pgpfac.c C = r SubGrp G | G 𝑠 r CycGrp ran pGrp
pgpfac.g φ G Abel
pgpfac.p φ P pGrp G
pgpfac.f φ B Fin
pgpfac.u φ U SubGrp G
pgpfac.a φ t SubGrp G t U s Word C G dom DProd s G DProd s = t
Assertion pgpfaclem3 φ s Word C G dom DProd s G DProd s = U

Proof

Step Hyp Ref Expression
1 pgpfac.b B = Base G
2 pgpfac.c C = r SubGrp G | G 𝑠 r CycGrp ran pGrp
3 pgpfac.g φ G Abel
4 pgpfac.p φ P pGrp G
5 pgpfac.f φ B Fin
6 pgpfac.u φ U SubGrp G
7 pgpfac.a φ t SubGrp G t U s Word C G dom DProd s G DProd s = t
8 wrd0 Word C
9 ablgrp G Abel G Grp
10 eqid 0 G = 0 G
11 10 dprd0 G Grp G dom DProd G DProd = 0 G
12 3 9 11 3syl φ G dom DProd G DProd = 0 G
13 12 adantr φ gEx G 𝑠 U = 1 G dom DProd G DProd = 0 G
14 10 subg0cl U SubGrp G 0 G U
15 6 14 syl φ 0 G U
16 15 adantr φ gEx G 𝑠 U = 1 0 G U
17 eqid G 𝑠 U = G 𝑠 U
18 17 subgbas U SubGrp G U = Base G 𝑠 U
19 6 18 syl φ U = Base G 𝑠 U
20 19 adantr φ gEx G 𝑠 U = 1 U = Base G 𝑠 U
21 17 subggrp U SubGrp G G 𝑠 U Grp
22 6 21 syl φ G 𝑠 U Grp
23 grpmnd G 𝑠 U Grp G 𝑠 U Mnd
24 eqid Base G 𝑠 U = Base G 𝑠 U
25 eqid gEx G 𝑠 U = gEx G 𝑠 U
26 24 25 gex1 G 𝑠 U Mnd gEx G 𝑠 U = 1 Base G 𝑠 U 1 𝑜
27 22 23 26 3syl φ gEx G 𝑠 U = 1 Base G 𝑠 U 1 𝑜
28 27 biimpa φ gEx G 𝑠 U = 1 Base G 𝑠 U 1 𝑜
29 20 28 eqbrtrd φ gEx G 𝑠 U = 1 U 1 𝑜
30 en1eqsn 0 G U U 1 𝑜 U = 0 G
31 16 29 30 syl2anc φ gEx G 𝑠 U = 1 U = 0 G
32 31 eqeq2d φ gEx G 𝑠 U = 1 G DProd = U G DProd = 0 G
33 32 anbi2d φ gEx G 𝑠 U = 1 G dom DProd G DProd = U G dom DProd G DProd = 0 G
34 13 33 mpbird φ gEx G 𝑠 U = 1 G dom DProd G DProd = U
35 breq2 s = G dom DProd s G dom DProd
36 oveq2 s = G DProd s = G DProd
37 36 eqeq1d s = G DProd s = U G DProd = U
38 35 37 anbi12d s = G dom DProd s G DProd s = U G dom DProd G DProd = U
39 38 rspcev Word C G dom DProd G DProd = U s Word C G dom DProd s G DProd s = U
40 8 34 39 sylancr φ gEx G 𝑠 U = 1 s Word C G dom DProd s G DProd s = U
41 17 subgabl G Abel U SubGrp G G 𝑠 U Abel
42 3 6 41 syl2anc φ G 𝑠 U Abel
43 1 subgss U SubGrp G U B
44 6 43 syl φ U B
45 5 44 ssfid φ U Fin
46 19 45 eqeltrrd φ Base G 𝑠 U Fin
47 24 25 gexcl2 G 𝑠 U Grp Base G 𝑠 U Fin gEx G 𝑠 U
48 22 46 47 syl2anc φ gEx G 𝑠 U
49 eqid od G 𝑠 U = od G 𝑠 U
50 24 25 49 gexex G 𝑠 U Abel gEx G 𝑠 U x Base G 𝑠 U od G 𝑠 U x = gEx G 𝑠 U
51 42 48 50 syl2anc φ x Base G 𝑠 U od G 𝑠 U x = gEx G 𝑠 U
52 51 adantr φ gEx G 𝑠 U 1 x Base G 𝑠 U od G 𝑠 U x = gEx G 𝑠 U
53 eqid mrCls SubGrp G 𝑠 U = mrCls SubGrp G 𝑠 U
54 eqid mrCls SubGrp G 𝑠 U x = mrCls SubGrp G 𝑠 U x
55 eqid 0 G 𝑠 U = 0 G 𝑠 U
56 eqid LSSum G 𝑠 U = LSSum G 𝑠 U
57 subgpgp P pGrp G U SubGrp G P pGrp G 𝑠 U
58 4 6 57 syl2anc φ P pGrp G 𝑠 U
59 58 ad2antrr φ gEx G 𝑠 U 1 x Base G 𝑠 U od G 𝑠 U x = gEx G 𝑠 U P pGrp G 𝑠 U
60 42 ad2antrr φ gEx G 𝑠 U 1 x Base G 𝑠 U od G 𝑠 U x = gEx G 𝑠 U G 𝑠 U Abel
61 46 ad2antrr φ gEx G 𝑠 U 1 x Base G 𝑠 U od G 𝑠 U x = gEx G 𝑠 U Base G 𝑠 U Fin
62 simprr φ gEx G 𝑠 U 1 x Base G 𝑠 U od G 𝑠 U x = gEx G 𝑠 U od G 𝑠 U x = gEx G 𝑠 U
63 simprl φ gEx G 𝑠 U 1 x Base G 𝑠 U od G 𝑠 U x = gEx G 𝑠 U x Base G 𝑠 U
64 53 54 24 49 25 55 56 59 60 61 62 63 pgpfac1 φ gEx G 𝑠 U 1 x Base G 𝑠 U od G 𝑠 U x = gEx G 𝑠 U w SubGrp G 𝑠 U mrCls SubGrp G 𝑠 U x w = 0 G 𝑠 U mrCls SubGrp G 𝑠 U x LSSum G 𝑠 U w = Base G 𝑠 U
65 3 ad3antrrr φ gEx G 𝑠 U 1 x Base G 𝑠 U od G 𝑠 U x = gEx G 𝑠 U w SubGrp G 𝑠 U mrCls SubGrp G 𝑠 U x w = 0 G 𝑠 U mrCls SubGrp G 𝑠 U x LSSum G 𝑠 U w = Base G 𝑠 U G Abel
66 4 ad3antrrr φ gEx G 𝑠 U 1 x Base G 𝑠 U od G 𝑠 U x = gEx G 𝑠 U w SubGrp G 𝑠 U mrCls SubGrp G 𝑠 U x w = 0 G 𝑠 U mrCls SubGrp G 𝑠 U x LSSum G 𝑠 U w = Base G 𝑠 U P pGrp G
67 5 ad3antrrr φ gEx G 𝑠 U 1 x Base G 𝑠 U od G 𝑠 U x = gEx G 𝑠 U w SubGrp G 𝑠 U mrCls SubGrp G 𝑠 U x w = 0 G 𝑠 U mrCls SubGrp G 𝑠 U x LSSum G 𝑠 U w = Base G 𝑠 U B Fin
68 6 ad3antrrr φ gEx G 𝑠 U 1 x Base G 𝑠 U od G 𝑠 U x = gEx G 𝑠 U w SubGrp G 𝑠 U mrCls SubGrp G 𝑠 U x w = 0 G 𝑠 U mrCls SubGrp G 𝑠 U x LSSum G 𝑠 U w = Base G 𝑠 U U SubGrp G
69 7 ad3antrrr φ gEx G 𝑠 U 1 x Base G 𝑠 U od G 𝑠 U x = gEx G 𝑠 U w SubGrp G 𝑠 U mrCls SubGrp G 𝑠 U x w = 0 G 𝑠 U mrCls SubGrp G 𝑠 U x LSSum G 𝑠 U w = Base G 𝑠 U t SubGrp G t U s Word C G dom DProd s G DProd s = t
70 simpllr φ gEx G 𝑠 U 1 x Base G 𝑠 U od G 𝑠 U x = gEx G 𝑠 U w SubGrp G 𝑠 U mrCls SubGrp G 𝑠 U x w = 0 G 𝑠 U mrCls SubGrp G 𝑠 U x LSSum G 𝑠 U w = Base G 𝑠 U gEx G 𝑠 U 1
71 simplrl φ gEx G 𝑠 U 1 x Base G 𝑠 U od G 𝑠 U x = gEx G 𝑠 U w SubGrp G 𝑠 U mrCls SubGrp G 𝑠 U x w = 0 G 𝑠 U mrCls SubGrp G 𝑠 U x LSSum G 𝑠 U w = Base G 𝑠 U x Base G 𝑠 U
72 68 18 syl φ gEx G 𝑠 U 1 x Base G 𝑠 U od G 𝑠 U x = gEx G 𝑠 U w SubGrp G 𝑠 U mrCls SubGrp G 𝑠 U x w = 0 G 𝑠 U mrCls SubGrp G 𝑠 U x LSSum G 𝑠 U w = Base G 𝑠 U U = Base G 𝑠 U
73 71 72 eleqtrrd φ gEx G 𝑠 U 1 x Base G 𝑠 U od G 𝑠 U x = gEx G 𝑠 U w SubGrp G 𝑠 U mrCls SubGrp G 𝑠 U x w = 0 G 𝑠 U mrCls SubGrp G 𝑠 U x LSSum G 𝑠 U w = Base G 𝑠 U x U
74 simplrr φ gEx G 𝑠 U 1 x Base G 𝑠 U od G 𝑠 U x = gEx G 𝑠 U w SubGrp G 𝑠 U mrCls SubGrp G 𝑠 U x w = 0 G 𝑠 U mrCls SubGrp G 𝑠 U x LSSum G 𝑠 U w = Base G 𝑠 U od G 𝑠 U x = gEx G 𝑠 U
75 simprl φ gEx G 𝑠 U 1 x Base G 𝑠 U od G 𝑠 U x = gEx G 𝑠 U w SubGrp G 𝑠 U mrCls SubGrp G 𝑠 U x w = 0 G 𝑠 U mrCls SubGrp G 𝑠 U x LSSum G 𝑠 U w = Base G 𝑠 U w SubGrp G 𝑠 U
76 simprrl φ gEx G 𝑠 U 1 x Base G 𝑠 U od G 𝑠 U x = gEx G 𝑠 U w SubGrp G 𝑠 U mrCls SubGrp G 𝑠 U x w = 0 G 𝑠 U mrCls SubGrp G 𝑠 U x LSSum G 𝑠 U w = Base G 𝑠 U mrCls SubGrp G 𝑠 U x w = 0 G 𝑠 U
77 simprrr φ gEx G 𝑠 U 1 x Base G 𝑠 U od G 𝑠 U x = gEx G 𝑠 U w SubGrp G 𝑠 U mrCls SubGrp G 𝑠 U x w = 0 G 𝑠 U mrCls SubGrp G 𝑠 U x LSSum G 𝑠 U w = Base G 𝑠 U mrCls SubGrp G 𝑠 U x LSSum G 𝑠 U w = Base G 𝑠 U
78 77 72 eqtr4d φ gEx G 𝑠 U 1 x Base G 𝑠 U od G 𝑠 U x = gEx G 𝑠 U w SubGrp G 𝑠 U mrCls SubGrp G 𝑠 U x w = 0 G 𝑠 U mrCls SubGrp G 𝑠 U x LSSum G 𝑠 U w = Base G 𝑠 U mrCls SubGrp G 𝑠 U x LSSum G 𝑠 U w = U
79 1 2 65 66 67 68 69 17 53 49 25 55 56 70 73 74 75 76 78 pgpfaclem2 φ gEx G 𝑠 U 1 x Base G 𝑠 U od G 𝑠 U x = gEx G 𝑠 U w SubGrp G 𝑠 U mrCls SubGrp G 𝑠 U x w = 0 G 𝑠 U mrCls SubGrp G 𝑠 U x LSSum G 𝑠 U w = Base G 𝑠 U s Word C G dom DProd s G DProd s = U
80 64 79 rexlimddv φ gEx G 𝑠 U 1 x Base G 𝑠 U od G 𝑠 U x = gEx G 𝑠 U s Word C G dom DProd s G DProd s = U
81 52 80 rexlimddv φ gEx G 𝑠 U 1 s Word C G dom DProd s G DProd s = U
82 40 81 pm2.61dane φ s Word C G dom DProd s G DProd s = U