Metamath Proof Explorer


Theorem pgpfi1

Description: A finite group with order a power of a prime P is a P -group. (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Hypothesis pgpfi1.1 X = Base G
Assertion pgpfi1 G Grp P N 0 X = P N P pGrp G

Proof

Step Hyp Ref Expression
1 pgpfi1.1 X = Base G
2 simpl2 G Grp P N 0 X = P N P
3 simpl1 G Grp P N 0 X = P N G Grp
4 simpll3 G Grp P N 0 X = P N x X N 0
5 3 adantr G Grp P N 0 X = P N x X G Grp
6 simplr G Grp P N 0 X = P N x X X = P N
7 2 adantr G Grp P N 0 X = P N x X P
8 prmnn P P
9 7 8 syl G Grp P N 0 X = P N x X P
10 9 4 nnexpcld G Grp P N 0 X = P N x X P N
11 10 nnnn0d G Grp P N 0 X = P N x X P N 0
12 6 11 eqeltrd G Grp P N 0 X = P N x X X 0
13 1 fvexi X V
14 hashclb X V X Fin X 0
15 13 14 ax-mp X Fin X 0
16 12 15 sylibr G Grp P N 0 X = P N x X X Fin
17 simpr G Grp P N 0 X = P N x X x X
18 eqid od G = od G
19 1 18 oddvds2 G Grp X Fin x X od G x X
20 5 16 17 19 syl3anc G Grp P N 0 X = P N x X od G x X
21 20 6 breqtrd G Grp P N 0 X = P N x X od G x P N
22 oveq2 n = N P n = P N
23 22 breq2d n = N od G x P n od G x P N
24 23 rspcev N 0 od G x P N n 0 od G x P n
25 4 21 24 syl2anc G Grp P N 0 X = P N x X n 0 od G x P n
26 1 18 odcl2 G Grp X Fin x X od G x
27 5 16 17 26 syl3anc G Grp P N 0 X = P N x X od G x
28 pcprmpw2 P od G x n 0 od G x P n od G x = P P pCnt od G x
29 pcprmpw P od G x n 0 od G x = P n od G x = P P pCnt od G x
30 28 29 bitr4d P od G x n 0 od G x P n n 0 od G x = P n
31 7 27 30 syl2anc G Grp P N 0 X = P N x X n 0 od G x P n n 0 od G x = P n
32 25 31 mpbid G Grp P N 0 X = P N x X n 0 od G x = P n
33 32 ralrimiva G Grp P N 0 X = P N x X n 0 od G x = P n
34 1 18 ispgp P pGrp G P G Grp x X n 0 od G x = P n
35 2 3 33 34 syl3anbrc G Grp P N 0 X = P N P pGrp G
36 35 ex G Grp P N 0 X = P N P pGrp G