Metamath Proof Explorer


Theorem pgpfi2

Description: Alternate version of pgpfi . (Contributed by Mario Carneiro, 27-Apr-2016)

Ref Expression
Hypothesis pgpfi.1 X = Base G
Assertion pgpfi2 G Grp X Fin P pGrp G P X = P P pCnt X

Proof

Step Hyp Ref Expression
1 pgpfi.1 X = Base G
2 1 pgpfi G Grp X Fin P pGrp G P n 0 X = P n
3 id P P
4 1 grpbn0 G Grp X
5 hashnncl X Fin X X
6 4 5 syl5ibrcom G Grp X Fin X
7 6 imp G Grp X Fin X
8 pcprmpw P X n 0 X = P n X = P P pCnt X
9 3 7 8 syl2anr G Grp X Fin P n 0 X = P n X = P P pCnt X
10 9 pm5.32da G Grp X Fin P n 0 X = P n P X = P P pCnt X
11 2 10 bitrd G Grp X Fin P pGrp G P X = P P pCnt X