Database
BASIC ALGEBRAIC STRUCTURES
Groups
p-Groups and Sylow groups; Sylow's theorems
pgpfi2
Next ⟩
pgphash
Metamath Proof Explorer
Ascii
Unicode
Theorem
pgpfi2
Description:
Alternate version of
pgpfi
.
(Contributed by
Mario Carneiro
, 27-Apr-2016)
Ref
Expression
Hypothesis
pgpfi.1
⊢
X
=
Base
G
Assertion
pgpfi2
⊢
G
∈
Grp
∧
X
∈
Fin
→
P
pGrp
G
↔
P
∈
ℙ
∧
X
=
P
P
pCnt
X
Proof
Step
Hyp
Ref
Expression
1
pgpfi.1
⊢
X
=
Base
G
2
1
pgpfi
⊢
G
∈
Grp
∧
X
∈
Fin
→
P
pGrp
G
↔
P
∈
ℙ
∧
∃
n
∈
ℕ
0
X
=
P
n
3
id
⊢
P
∈
ℙ
→
P
∈
ℙ
4
1
grpbn0
⊢
G
∈
Grp
→
X
≠
∅
5
hashnncl
⊢
X
∈
Fin
→
X
∈
ℕ
↔
X
≠
∅
6
4
5
syl5ibrcom
⊢
G
∈
Grp
→
X
∈
Fin
→
X
∈
ℕ
7
6
imp
⊢
G
∈
Grp
∧
X
∈
Fin
→
X
∈
ℕ
8
pcprmpw
⊢
P
∈
ℙ
∧
X
∈
ℕ
→
∃
n
∈
ℕ
0
X
=
P
n
↔
X
=
P
P
pCnt
X
9
3
7
8
syl2anr
⊢
G
∈
Grp
∧
X
∈
Fin
∧
P
∈
ℙ
→
∃
n
∈
ℕ
0
X
=
P
n
↔
X
=
P
P
pCnt
X
10
9
pm5.32da
⊢
G
∈
Grp
∧
X
∈
Fin
→
P
∈
ℙ
∧
∃
n
∈
ℕ
0
X
=
P
n
↔
P
∈
ℙ
∧
X
=
P
P
pCnt
X
11
2
10
bitrd
⊢
G
∈
Grp
∧
X
∈
Fin
→
P
pGrp
G
↔
P
∈
ℙ
∧
X
=
P
P
pCnt
X