Metamath Proof Explorer


Theorem pgpgrp

Description: Reverse closure for the second argument of pGrp . (Contributed by Mario Carneiro, 15-Jan-2015)

Ref Expression
Assertion pgpgrp P pGrp G G Grp

Proof

Step Hyp Ref Expression
1 eqid Base G = Base G
2 eqid od G = od G
3 1 2 ispgp P pGrp G P G Grp x Base G n 0 od G x = P n
4 3 simp2bi P pGrp G G Grp