Metamath Proof Explorer


Theorem pgphash

Description: The order of a p-group. (Contributed by Mario Carneiro, 27-Apr-2016)

Ref Expression
Hypothesis pgpfi.1 X = Base G
Assertion pgphash P pGrp G X Fin X = P P pCnt X

Proof

Step Hyp Ref Expression
1 pgpfi.1 X = Base G
2 simpl P pGrp G X Fin P pGrp G
3 pgpgrp P pGrp G G Grp
4 1 pgpfi2 G Grp X Fin P pGrp G P X = P P pCnt X
5 3 4 sylan P pGrp G X Fin P pGrp G P X = P P pCnt X
6 2 5 mpbid P pGrp G X Fin P X = P P pCnt X
7 6 simprd P pGrp G X Fin X = P P pCnt X