Metamath Proof Explorer


Theorem pgpprm

Description: Reverse closure for the first argument of pGrp . (Contributed by Mario Carneiro, 15-Jan-2015)

Ref Expression
Assertion pgpprm P pGrp G P

Proof

Step Hyp Ref Expression
1 eqid Base G = Base G
2 eqid od G = od G
3 1 2 ispgp P pGrp G P G Grp x Base G n 0 od G x = P n
4 3 simp1bi P pGrp G P