Step |
Hyp |
Ref |
Expression |
1 |
|
pgpssslw.1 |
|
2 |
|
pgpssslw.2 |
|
3 |
|
pgpssslw.3 |
|
4 |
|
simp2 |
|
5 |
|
elrabi |
|
6 |
1
|
subgss |
|
7 |
5 6
|
syl |
|
8 |
|
ssfi |
|
9 |
4 7 8
|
syl2an |
|
10 |
|
hashcl |
|
11 |
9 10
|
syl |
|
12 |
11
|
nn0zd |
|
13 |
12 3
|
fmptd |
|
14 |
13
|
frnd |
|
15 |
|
fvex |
|
16 |
15 3
|
fnmpti |
|
17 |
|
eqimss2 |
|
18 |
17
|
biantrud |
|
19 |
|
oveq2 |
|
20 |
19 2
|
eqtr4di |
|
21 |
20
|
breq2d |
|
22 |
18 21
|
bitr3d |
|
23 |
|
simp1 |
|
24 |
|
simp3 |
|
25 |
22 23 24
|
elrabd |
|
26 |
|
fnfvelrn |
|
27 |
16 25 26
|
sylancr |
|
28 |
27
|
ne0d |
|
29 |
|
hashcl |
|
30 |
4 29
|
syl |
|
31 |
30
|
nn0red |
|
32 |
|
fveq2 |
|
33 |
|
fvex |
|
34 |
32 3 33
|
fvmpt |
|
35 |
34
|
adantl |
|
36 |
|
oveq2 |
|
37 |
36
|
breq2d |
|
38 |
|
sseq2 |
|
39 |
37 38
|
anbi12d |
|
40 |
39
|
elrab |
|
41 |
4
|
adantr |
|
42 |
1
|
subgss |
|
43 |
42
|
ad2antrl |
|
44 |
|
ssdomg |
|
45 |
41 43 44
|
sylc |
|
46 |
41 43
|
ssfid |
|
47 |
|
hashdom |
|
48 |
46 41 47
|
syl2anc |
|
49 |
45 48
|
mpbird |
|
50 |
40 49
|
sylan2b |
|
51 |
35 50
|
eqbrtrd |
|
52 |
51
|
ralrimiva |
|
53 |
|
breq1 |
|
54 |
53
|
ralrn |
|
55 |
16 54
|
ax-mp |
|
56 |
52 55
|
sylibr |
|
57 |
|
brralrspcev |
|
58 |
31 56 57
|
syl2anc |
|
59 |
|
suprzcl |
|
60 |
14 28 58 59
|
syl3anc |
|
61 |
|
fvelrnb |
|
62 |
16 61
|
ax-mp |
|
63 |
60 62
|
sylib |
|
64 |
|
oveq2 |
|
65 |
64
|
breq2d |
|
66 |
|
sseq2 |
|
67 |
65 66
|
anbi12d |
|
68 |
67
|
rexrab |
|
69 |
63 68
|
sylib |
|
70 |
|
simpl3 |
|
71 |
|
pgpprm |
|
72 |
70 71
|
syl |
|
73 |
|
simprl |
|
74 |
|
zssre |
|
75 |
14 74
|
sstrdi |
|
76 |
75
|
ad2antrr |
|
77 |
28
|
ad2antrr |
|
78 |
58
|
ad2antrr |
|
79 |
|
simprl |
|
80 |
|
simprrr |
|
81 |
|
simprrl |
|
82 |
81
|
adantr |
|
83 |
82
|
simprd |
|
84 |
|
simprrl |
|
85 |
83 84
|
sstrd |
|
86 |
80 85
|
jca |
|
87 |
39 79 86
|
elrabd |
|
88 |
87 34
|
syl |
|
89 |
|
fnfvelrn |
|
90 |
16 87 89
|
sylancr |
|
91 |
88 90
|
eqeltrrd |
|
92 |
76 77 78 91
|
suprubd |
|
93 |
|
simprrr |
|
94 |
93
|
adantr |
|
95 |
73
|
adantr |
|
96 |
67 95 82
|
elrabd |
|
97 |
|
fveq2 |
|
98 |
|
fvex |
|
99 |
97 3 98
|
fvmpt |
|
100 |
96 99
|
syl |
|
101 |
94 100
|
eqtr3d |
|
102 |
92 101
|
breqtrd |
|
103 |
|
simpll2 |
|
104 |
42
|
ad2antrl |
|
105 |
103 104
|
ssfid |
|
106 |
105 84
|
ssfid |
|
107 |
|
hashcl |
|
108 |
|
hashcl |
|
109 |
|
nn0re |
|
110 |
|
nn0re |
|
111 |
|
lenlt |
|
112 |
109 110 111
|
syl2an |
|
113 |
107 108 112
|
syl2an |
|
114 |
105 106 113
|
syl2anc |
|
115 |
102 114
|
mpbid |
|
116 |
|
php3 |
|
117 |
116
|
ex |
|
118 |
105 117
|
syl |
|
119 |
|
hashsdom |
|
120 |
106 105 119
|
syl2anc |
|
121 |
118 120
|
sylibrd |
|
122 |
115 121
|
mtod |
|
123 |
|
sspss |
|
124 |
84 123
|
sylib |
|
125 |
124
|
ord |
|
126 |
122 125
|
mpd |
|
127 |
126
|
expr |
|
128 |
81
|
simpld |
|
129 |
128
|
adantr |
|
130 |
|
oveq2 |
|
131 |
130
|
breq2d |
|
132 |
|
eqimss |
|
133 |
132
|
biantrurd |
|
134 |
131 133
|
bitrd |
|
135 |
129 134
|
syl5ibcom |
|
136 |
127 135
|
impbid |
|
137 |
136
|
ralrimiva |
|
138 |
|
isslw |
|
139 |
72 73 137 138
|
syl3anbrc |
|
140 |
81
|
simprd |
|
141 |
69 139 140
|
reximssdv |
|