Metamath Proof Explorer


Theorem pgrpsubgsymgbi

Description: Every permutation group is a subgroup of the corresponding symmetric group. (Contributed by AV, 14-Mar-2019)

Ref Expression
Hypotheses pgrpsubgsymgbi.g G = SymGrp A
pgrpsubgsymgbi.b B = Base G
Assertion pgrpsubgsymgbi A V P SubGrp G P B G 𝑠 P Grp

Proof

Step Hyp Ref Expression
1 pgrpsubgsymgbi.g G = SymGrp A
2 pgrpsubgsymgbi.b B = Base G
3 2 issubg P SubGrp G G Grp P B G 𝑠 P Grp
4 3anass G Grp P B G 𝑠 P Grp G Grp P B G 𝑠 P Grp
5 3 4 bitri P SubGrp G G Grp P B G 𝑠 P Grp
6 1 symggrp A V G Grp
7 ibar G Grp P B G 𝑠 P Grp G Grp P B G 𝑠 P Grp
8 7 bicomd G Grp G Grp P B G 𝑠 P Grp P B G 𝑠 P Grp
9 6 8 syl A V G Grp P B G 𝑠 P Grp P B G 𝑠 P Grp
10 5 9 syl5bb A V P SubGrp G P B G 𝑠 P Grp