Metamath Proof Explorer


Theorem phclm

Description: A pre-Hilbert space whose field of scalars is a restriction of the field of complex numbers is a subcomplex module. TODO: redundant hypotheses. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses tcphval.n G = toCPreHil W
tcphcph.v V = Base W
tcphcph.f F = Scalar W
tcphcph.1 φ W PreHil
tcphcph.2 φ F = fld 𝑠 K
Assertion phclm φ W CMod

Proof

Step Hyp Ref Expression
1 tcphval.n G = toCPreHil W
2 tcphcph.v V = Base W
3 tcphcph.f F = Scalar W
4 tcphcph.1 φ W PreHil
5 tcphcph.2 φ F = fld 𝑠 K
6 phllmod W PreHil W LMod
7 4 6 syl φ W LMod
8 eqid Base F = Base F
9 phllvec W PreHil W LVec
10 4 9 syl φ W LVec
11 3 lvecdrng W LVec F DivRing
12 10 11 syl φ F DivRing
13 8 5 12 cphsubrglem φ F = fld 𝑠 Base F Base F = K Base F SubRing fld
14 13 simp1d φ F = fld 𝑠 Base F
15 13 simp3d φ Base F SubRing fld
16 3 8 isclm W CMod W LMod F = fld 𝑠 Base F Base F SubRing fld
17 7 14 15 16 syl3anbrc φ W CMod