Metamath Proof Explorer


Theorem phi1

Description: Value of the Euler phi function at 1. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion phi1 ϕ 1 = 1

Proof

Step Hyp Ref Expression
1 1nn 1
2 phicl2 1 ϕ 1 1 1
3 1 2 ax-mp ϕ 1 1 1
4 1z 1
5 fzsn 1 1 1 = 1
6 4 5 ax-mp 1 1 = 1
7 3 6 eleqtri ϕ 1 1
8 elsni ϕ 1 1 ϕ 1 = 1
9 7 8 ax-mp ϕ 1 = 1