Metamath Proof Explorer


Theorem phibndlem

Description: Lemma for phibnd . (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion phibndlem N 2 x 1 N | x gcd N = 1 1 N 1

Proof

Step Hyp Ref Expression
1 eluz2nn N 2 N
2 fzm1 N 1 x 1 N x 1 N 1 x = N
3 nnuz = 1
4 2 3 eleq2s N x 1 N x 1 N 1 x = N
5 4 biimpa N x 1 N x 1 N 1 x = N
6 5 ord N x 1 N ¬ x 1 N 1 x = N
7 1 6 sylan N 2 x 1 N ¬ x 1 N 1 x = N
8 eluzelz N 2 N
9 gcdid N N gcd N = N
10 8 9 syl N 2 N gcd N = N
11 nnre N N
12 nnnn0 N N 0
13 12 nn0ge0d N 0 N
14 11 13 absidd N N = N
15 1 14 syl N 2 N = N
16 10 15 eqtrd N 2 N gcd N = N
17 1re 1
18 eluz2gt1 N 2 1 < N
19 ltne 1 1 < N N 1
20 17 18 19 sylancr N 2 N 1
21 16 20 eqnetrd N 2 N gcd N 1
22 oveq1 x = N x gcd N = N gcd N
23 22 neeq1d x = N x gcd N 1 N gcd N 1
24 21 23 syl5ibrcom N 2 x = N x gcd N 1
25 24 adantr N 2 x 1 N x = N x gcd N 1
26 7 25 syld N 2 x 1 N ¬ x 1 N 1 x gcd N 1
27 26 necon4bd N 2 x 1 N x gcd N = 1 x 1 N 1
28 27 ralrimiva N 2 x 1 N x gcd N = 1 x 1 N 1
29 rabss x 1 N | x gcd N = 1 1 N 1 x 1 N x gcd N = 1 x 1 N 1
30 28 29 sylibr N 2 x 1 N | x gcd N = 1 1 N 1