Description: Lemma for phibnd . (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | phibndlem | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2nn | |
|
| 2 | fzm1 | |
|
| 3 | nnuz | |
|
| 4 | 2 3 | eleq2s | |
| 5 | 4 | biimpa | |
| 6 | 5 | ord | |
| 7 | 1 6 | sylan | |
| 8 | eluzelz | |
|
| 9 | gcdid | |
|
| 10 | 8 9 | syl | |
| 11 | nnre | |
|
| 12 | nnnn0 | |
|
| 13 | 12 | nn0ge0d | |
| 14 | 11 13 | absidd | |
| 15 | 1 14 | syl | |
| 16 | 10 15 | eqtrd | |
| 17 | 1re | |
|
| 18 | eluz2gt1 | |
|
| 19 | ltne | |
|
| 20 | 17 18 19 | sylancr | |
| 21 | 16 20 | eqnetrd | |
| 22 | oveq1 | |
|
| 23 | 22 | neeq1d | |
| 24 | 21 23 | syl5ibrcom | |
| 25 | 24 | adantr | |
| 26 | 7 25 | syld | |
| 27 | 26 | necon4bd | |
| 28 | 27 | ralrimiva | |
| 29 | rabss | |
|
| 30 | 28 29 | sylibr | |