Metamath Proof Explorer


Theorem phicl2

Description: Bounds and closure for the value of the Euler phi function. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion phicl2 N ϕ N 1 N

Proof

Step Hyp Ref Expression
1 phival N ϕ N = x 1 N | x gcd N = 1
2 fzfi 1 N Fin
3 ssrab2 x 1 N | x gcd N = 1 1 N
4 ssfi 1 N Fin x 1 N | x gcd N = 1 1 N x 1 N | x gcd N = 1 Fin
5 2 3 4 mp2an x 1 N | x gcd N = 1 Fin
6 hashcl x 1 N | x gcd N = 1 Fin x 1 N | x gcd N = 1 0
7 5 6 ax-mp x 1 N | x gcd N = 1 0
8 7 nn0zi x 1 N | x gcd N = 1
9 8 a1i N x 1 N | x gcd N = 1
10 1z 1
11 hashsng 1 1 = 1
12 10 11 ax-mp 1 = 1
13 ovex 1 N V
14 13 rabex x 1 N | x gcd N = 1 V
15 oveq1 x = 1 x gcd N = 1 gcd N
16 15 eqeq1d x = 1 x gcd N = 1 1 gcd N = 1
17 eluzfz1 N 1 1 1 N
18 nnuz = 1
19 17 18 eleq2s N 1 1 N
20 nnz N N
21 1gcd N 1 gcd N = 1
22 20 21 syl N 1 gcd N = 1
23 16 19 22 elrabd N 1 x 1 N | x gcd N = 1
24 23 snssd N 1 x 1 N | x gcd N = 1
25 ssdomg x 1 N | x gcd N = 1 V 1 x 1 N | x gcd N = 1 1 x 1 N | x gcd N = 1
26 14 24 25 mpsyl N 1 x 1 N | x gcd N = 1
27 snfi 1 Fin
28 hashdom 1 Fin x 1 N | x gcd N = 1 Fin 1 x 1 N | x gcd N = 1 1 x 1 N | x gcd N = 1
29 27 5 28 mp2an 1 x 1 N | x gcd N = 1 1 x 1 N | x gcd N = 1
30 26 29 sylibr N 1 x 1 N | x gcd N = 1
31 12 30 eqbrtrrid N 1 x 1 N | x gcd N = 1
32 ssdomg 1 N V x 1 N | x gcd N = 1 1 N x 1 N | x gcd N = 1 1 N
33 13 3 32 mp2 x 1 N | x gcd N = 1 1 N
34 hashdom x 1 N | x gcd N = 1 Fin 1 N Fin x 1 N | x gcd N = 1 1 N x 1 N | x gcd N = 1 1 N
35 5 2 34 mp2an x 1 N | x gcd N = 1 1 N x 1 N | x gcd N = 1 1 N
36 33 35 mpbir x 1 N | x gcd N = 1 1 N
37 nnnn0 N N 0
38 hashfz1 N 0 1 N = N
39 37 38 syl N 1 N = N
40 36 39 breqtrid N x 1 N | x gcd N = 1 N
41 elfz1 1 N x 1 N | x gcd N = 1 1 N x 1 N | x gcd N = 1 1 x 1 N | x gcd N = 1 x 1 N | x gcd N = 1 N
42 10 20 41 sylancr N x 1 N | x gcd N = 1 1 N x 1 N | x gcd N = 1 1 x 1 N | x gcd N = 1 x 1 N | x gcd N = 1 N
43 9 31 40 42 mpbir3and N x 1 N | x gcd N = 1 1 N
44 1 43 eqeltrd N ϕ N 1 N