Metamath Proof Explorer


Theorem phicld

Description: Closure for the value of the Euler phi function. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis phicld.1 φ N
Assertion phicld φ ϕ N

Proof

Step Hyp Ref Expression
1 phicld.1 φ N
2 phicl N ϕ N
3 1 2 syl φ ϕ N