Metamath Proof Explorer


Theorem phimul

Description: The Euler phi function is a multiplicative function, meaning that it distributes over multiplication at relatively prime arguments. Theorem 2.5(c) in ApostolNT p. 28. (Contributed by Mario Carneiro, 24-Feb-2014)

Ref Expression
Assertion phimul M N M gcd N = 1 ϕ M N = ϕ M ϕ N

Proof

Step Hyp Ref Expression
1 eqid 0 ..^ M N = 0 ..^ M N
2 eqid 0 ..^ M × 0 ..^ N = 0 ..^ M × 0 ..^ N
3 eqid x 0 ..^ M N x mod M x mod N = x 0 ..^ M N x mod M x mod N
4 id M N M gcd N = 1 M N M gcd N = 1
5 eqid y 0 ..^ M | y gcd M = 1 = y 0 ..^ M | y gcd M = 1
6 eqid y 0 ..^ N | y gcd N = 1 = y 0 ..^ N | y gcd N = 1
7 eqid y 0 ..^ M N | y gcd M N = 1 = y 0 ..^ M N | y gcd M N = 1
8 1 2 3 4 5 6 7 phimullem M N M gcd N = 1 ϕ M N = ϕ M ϕ N