Metamath Proof Explorer


Theorem phimullem

Description: Lemma for phimul . (Contributed by Mario Carneiro, 24-Feb-2014)

Ref Expression
Hypotheses crth.1 S = 0 ..^ M N
crth.2 T = 0 ..^ M × 0 ..^ N
crth.3 F = x S x mod M x mod N
crth.4 φ M N M gcd N = 1
phimul.4 U = y 0 ..^ M | y gcd M = 1
phimul.5 V = y 0 ..^ N | y gcd N = 1
phimul.6 W = y S | y gcd M N = 1
Assertion phimullem φ ϕ M N = ϕ M ϕ N

Proof

Step Hyp Ref Expression
1 crth.1 S = 0 ..^ M N
2 crth.2 T = 0 ..^ M × 0 ..^ N
3 crth.3 F = x S x mod M x mod N
4 crth.4 φ M N M gcd N = 1
5 phimul.4 U = y 0 ..^ M | y gcd M = 1
6 phimul.5 V = y 0 ..^ N | y gcd N = 1
7 phimul.6 W = y S | y gcd M N = 1
8 fzofi 0 ..^ M Fin
9 ssrab2 y 0 ..^ M | y gcd M = 1 0 ..^ M
10 ssfi 0 ..^ M Fin y 0 ..^ M | y gcd M = 1 0 ..^ M y 0 ..^ M | y gcd M = 1 Fin
11 8 9 10 mp2an y 0 ..^ M | y gcd M = 1 Fin
12 5 11 eqeltri U Fin
13 fzofi 0 ..^ N Fin
14 ssrab2 y 0 ..^ N | y gcd N = 1 0 ..^ N
15 ssfi 0 ..^ N Fin y 0 ..^ N | y gcd N = 1 0 ..^ N y 0 ..^ N | y gcd N = 1 Fin
16 13 14 15 mp2an y 0 ..^ N | y gcd N = 1 Fin
17 6 16 eqeltri V Fin
18 hashxp U Fin V Fin U × V = U V
19 12 17 18 mp2an U × V = U V
20 oveq1 y = w y gcd M N = w gcd M N
21 20 eqeq1d y = w y gcd M N = 1 w gcd M N = 1
22 21 7 elrab2 w W w S w gcd M N = 1
23 22 simplbi w W w S
24 oveq1 x = w x mod M = w mod M
25 oveq1 x = w x mod N = w mod N
26 24 25 opeq12d x = w x mod M x mod N = w mod M w mod N
27 opex w mod M w mod N V
28 26 3 27 fvmpt w S F w = w mod M w mod N
29 23 28 syl w W F w = w mod M w mod N
30 29 adantl φ w W F w = w mod M w mod N
31 23 1 eleqtrdi w W w 0 ..^ M N
32 31 adantl φ w W w 0 ..^ M N
33 elfzoelz w 0 ..^ M N w
34 32 33 syl φ w W w
35 4 simp1d φ M
36 35 adantr φ w W M
37 zmodfzo w M w mod M 0 ..^ M
38 34 36 37 syl2anc φ w W w mod M 0 ..^ M
39 modgcd w M w mod M gcd M = w gcd M
40 34 36 39 syl2anc φ w W w mod M gcd M = w gcd M
41 36 nnzd φ w W M
42 gcddvds w M w gcd M w w gcd M M
43 34 41 42 syl2anc φ w W w gcd M w w gcd M M
44 43 simpld φ w W w gcd M w
45 nnne0 M M 0
46 simpr w = 0 M = 0 M = 0
47 46 necon3ai M 0 ¬ w = 0 M = 0
48 36 45 47 3syl φ w W ¬ w = 0 M = 0
49 gcdn0cl w M ¬ w = 0 M = 0 w gcd M
50 34 41 48 49 syl21anc φ w W w gcd M
51 50 nnzd φ w W w gcd M
52 4 simp2d φ N
53 52 adantr φ w W N
54 53 nnzd φ w W N
55 43 simprd φ w W w gcd M M
56 51 41 54 55 dvdsmultr1d φ w W w gcd M M N
57 36 53 nnmulcld φ w W M N
58 57 nnzd φ w W M N
59 nnne0 M N M N 0
60 simpr w = 0 M N = 0 M N = 0
61 60 necon3ai M N 0 ¬ w = 0 M N = 0
62 57 59 61 3syl φ w W ¬ w = 0 M N = 0
63 dvdslegcd w gcd M w M N ¬ w = 0 M N = 0 w gcd M w w gcd M M N w gcd M w gcd M N
64 51 34 58 62 63 syl31anc φ w W w gcd M w w gcd M M N w gcd M w gcd M N
65 44 56 64 mp2and φ w W w gcd M w gcd M N
66 22 simprbi w W w gcd M N = 1
67 66 adantl φ w W w gcd M N = 1
68 65 67 breqtrd φ w W w gcd M 1
69 nnle1eq1 w gcd M w gcd M 1 w gcd M = 1
70 50 69 syl φ w W w gcd M 1 w gcd M = 1
71 68 70 mpbid φ w W w gcd M = 1
72 40 71 eqtrd φ w W w mod M gcd M = 1
73 oveq1 y = w mod M y gcd M = w mod M gcd M
74 73 eqeq1d y = w mod M y gcd M = 1 w mod M gcd M = 1
75 74 5 elrab2 w mod M U w mod M 0 ..^ M w mod M gcd M = 1
76 38 72 75 sylanbrc φ w W w mod M U
77 zmodfzo w N w mod N 0 ..^ N
78 34 53 77 syl2anc φ w W w mod N 0 ..^ N
79 modgcd w N w mod N gcd N = w gcd N
80 34 53 79 syl2anc φ w W w mod N gcd N = w gcd N
81 gcddvds w N w gcd N w w gcd N N
82 34 54 81 syl2anc φ w W w gcd N w w gcd N N
83 82 simpld φ w W w gcd N w
84 nnne0 N N 0
85 simpr w = 0 N = 0 N = 0
86 85 necon3ai N 0 ¬ w = 0 N = 0
87 53 84 86 3syl φ w W ¬ w = 0 N = 0
88 gcdn0cl w N ¬ w = 0 N = 0 w gcd N
89 34 54 87 88 syl21anc φ w W w gcd N
90 89 nnzd φ w W w gcd N
91 82 simprd φ w W w gcd N N
92 dvdsmul2 M N N M N
93 41 54 92 syl2anc φ w W N M N
94 90 54 58 91 93 dvdstrd φ w W w gcd N M N
95 dvdslegcd w gcd N w M N ¬ w = 0 M N = 0 w gcd N w w gcd N M N w gcd N w gcd M N
96 90 34 58 62 95 syl31anc φ w W w gcd N w w gcd N M N w gcd N w gcd M N
97 83 94 96 mp2and φ w W w gcd N w gcd M N
98 97 67 breqtrd φ w W w gcd N 1
99 nnle1eq1 w gcd N w gcd N 1 w gcd N = 1
100 89 99 syl φ w W w gcd N 1 w gcd N = 1
101 98 100 mpbid φ w W w gcd N = 1
102 80 101 eqtrd φ w W w mod N gcd N = 1
103 oveq1 y = w mod N y gcd N = w mod N gcd N
104 103 eqeq1d y = w mod N y gcd N = 1 w mod N gcd N = 1
105 104 6 elrab2 w mod N V w mod N 0 ..^ N w mod N gcd N = 1
106 78 102 105 sylanbrc φ w W w mod N V
107 76 106 opelxpd φ w W w mod M w mod N U × V
108 30 107 eqeltrd φ w W F w U × V
109 108 ralrimiva φ w W F w U × V
110 1 2 3 4 crth φ F : S 1-1 onto T
111 f1ofn F : S 1-1 onto T F Fn S
112 fnfun F Fn S Fun F
113 110 111 112 3syl φ Fun F
114 7 ssrab3 W S
115 fndm F Fn S dom F = S
116 110 111 115 3syl φ dom F = S
117 114 116 sseqtrrid φ W dom F
118 funimass4 Fun F W dom F F W U × V w W F w U × V
119 113 117 118 syl2anc φ F W U × V w W F w U × V
120 109 119 mpbird φ F W U × V
121 5 ssrab3 U 0 ..^ M
122 6 ssrab3 V 0 ..^ N
123 xpss12 U 0 ..^ M V 0 ..^ N U × V 0 ..^ M × 0 ..^ N
124 121 122 123 mp2an U × V 0 ..^ M × 0 ..^ N
125 124 2 sseqtrri U × V T
126 125 sseli z U × V z T
127 f1ocnvfv2 F : S 1-1 onto T z T F F -1 z = z
128 110 126 127 syl2an φ z U × V F F -1 z = z
129 f1ocnv F : S 1-1 onto T F -1 : T 1-1 onto S
130 f1of F -1 : T 1-1 onto S F -1 : T S
131 110 129 130 3syl φ F -1 : T S
132 ffvelrn F -1 : T S z T F -1 z S
133 131 126 132 syl2an φ z U × V F -1 z S
134 133 1 eleqtrdi φ z U × V F -1 z 0 ..^ M N
135 elfzoelz F -1 z 0 ..^ M N F -1 z
136 134 135 syl φ z U × V F -1 z
137 35 adantr φ z U × V M
138 modgcd F -1 z M F -1 z mod M gcd M = F -1 z gcd M
139 136 137 138 syl2anc φ z U × V F -1 z mod M gcd M = F -1 z gcd M
140 oveq1 w = F -1 z w mod M = F -1 z mod M
141 oveq1 w = F -1 z w mod N = F -1 z mod N
142 140 141 opeq12d w = F -1 z w mod M w mod N = F -1 z mod M F -1 z mod N
143 26 cbvmptv x S x mod M x mod N = w S w mod M w mod N
144 3 143 eqtri F = w S w mod M w mod N
145 opex F -1 z mod M F -1 z mod N V
146 142 144 145 fvmpt F -1 z S F F -1 z = F -1 z mod M F -1 z mod N
147 133 146 syl φ z U × V F F -1 z = F -1 z mod M F -1 z mod N
148 128 147 eqtr3d φ z U × V z = F -1 z mod M F -1 z mod N
149 simpr φ z U × V z U × V
150 148 149 eqeltrrd φ z U × V F -1 z mod M F -1 z mod N U × V
151 opelxp F -1 z mod M F -1 z mod N U × V F -1 z mod M U F -1 z mod N V
152 150 151 sylib φ z U × V F -1 z mod M U F -1 z mod N V
153 152 simpld φ z U × V F -1 z mod M U
154 oveq1 y = F -1 z mod M y gcd M = F -1 z mod M gcd M
155 154 eqeq1d y = F -1 z mod M y gcd M = 1 F -1 z mod M gcd M = 1
156 155 5 elrab2 F -1 z mod M U F -1 z mod M 0 ..^ M F -1 z mod M gcd M = 1
157 153 156 sylib φ z U × V F -1 z mod M 0 ..^ M F -1 z mod M gcd M = 1
158 157 simprd φ z U × V F -1 z mod M gcd M = 1
159 139 158 eqtr3d φ z U × V F -1 z gcd M = 1
160 52 adantr φ z U × V N
161 modgcd F -1 z N F -1 z mod N gcd N = F -1 z gcd N
162 136 160 161 syl2anc φ z U × V F -1 z mod N gcd N = F -1 z gcd N
163 152 simprd φ z U × V F -1 z mod N V
164 oveq1 y = F -1 z mod N y gcd N = F -1 z mod N gcd N
165 164 eqeq1d y = F -1 z mod N y gcd N = 1 F -1 z mod N gcd N = 1
166 165 6 elrab2 F -1 z mod N V F -1 z mod N 0 ..^ N F -1 z mod N gcd N = 1
167 163 166 sylib φ z U × V F -1 z mod N 0 ..^ N F -1 z mod N gcd N = 1
168 167 simprd φ z U × V F -1 z mod N gcd N = 1
169 162 168 eqtr3d φ z U × V F -1 z gcd N = 1
170 35 nnzd φ M
171 170 adantr φ z U × V M
172 52 nnzd φ N
173 172 adantr φ z U × V N
174 rpmul F -1 z M N F -1 z gcd M = 1 F -1 z gcd N = 1 F -1 z gcd M N = 1
175 136 171 173 174 syl3anc φ z U × V F -1 z gcd M = 1 F -1 z gcd N = 1 F -1 z gcd M N = 1
176 159 169 175 mp2and φ z U × V F -1 z gcd M N = 1
177 oveq1 y = F -1 z y gcd M N = F -1 z gcd M N
178 177 eqeq1d y = F -1 z y gcd M N = 1 F -1 z gcd M N = 1
179 178 7 elrab2 F -1 z W F -1 z S F -1 z gcd M N = 1
180 133 176 179 sylanbrc φ z U × V F -1 z W
181 funfvima2 Fun F W dom F F -1 z W F F -1 z F W
182 113 117 181 syl2anc φ F -1 z W F F -1 z F W
183 182 imp φ F -1 z W F F -1 z F W
184 180 183 syldan φ z U × V F F -1 z F W
185 128 184 eqeltrrd φ z U × V z F W
186 120 185 eqelssd φ F W = U × V
187 f1of1 F : S 1-1 onto T F : S 1-1 T
188 110 187 syl φ F : S 1-1 T
189 fzofi 0 ..^ M N Fin
190 1 189 eqeltri S Fin
191 ssfi S Fin W S W Fin
192 190 114 191 mp2an W Fin
193 192 elexi W V
194 193 f1imaen F : S 1-1 T W S F W W
195 188 114 194 sylancl φ F W W
196 186 195 eqbrtrrd φ U × V W
197 xpfi U Fin V Fin U × V Fin
198 12 17 197 mp2an U × V Fin
199 hashen U × V Fin W Fin U × V = W U × V W
200 198 192 199 mp2an U × V = W U × V W
201 196 200 sylibr φ U × V = W
202 19 201 syl5reqr φ W = U V
203 35 52 nnmulcld φ M N
204 dfphi2 M N ϕ M N = y 0 ..^ M N | y gcd M N = 1
205 1 rabeqi y S | y gcd M N = 1 = y 0 ..^ M N | y gcd M N = 1
206 7 205 eqtri W = y 0 ..^ M N | y gcd M N = 1
207 206 fveq2i W = y 0 ..^ M N | y gcd M N = 1
208 204 207 eqtr4di M N ϕ M N = W
209 203 208 syl φ ϕ M N = W
210 dfphi2 M ϕ M = y 0 ..^ M | y gcd M = 1
211 5 fveq2i U = y 0 ..^ M | y gcd M = 1
212 210 211 eqtr4di M ϕ M = U
213 35 212 syl φ ϕ M = U
214 dfphi2 N ϕ N = y 0 ..^ N | y gcd N = 1
215 6 fveq2i V = y 0 ..^ N | y gcd N = 1
216 214 215 eqtr4di N ϕ N = V
217 52 216 syl φ ϕ N = V
218 213 217 oveq12d φ ϕ M ϕ N = U V
219 202 209 218 3eqtr4d φ ϕ M N = ϕ M ϕ N