Metamath Proof Explorer


Theorem phiprm

Description: Value of the Euler phi function at a prime. (Contributed by Mario Carneiro, 28-Feb-2014)

Ref Expression
Assertion phiprm P ϕ P = P 1

Proof

Step Hyp Ref Expression
1 1nn 1
2 phiprmpw P 1 ϕ P 1 = P 1 1 P 1
3 1 2 mpan2 P ϕ P 1 = P 1 1 P 1
4 prmz P P
5 4 zcnd P P
6 5 exp1d P P 1 = P
7 6 fveq2d P ϕ P 1 = ϕ P
8 1m1e0 1 1 = 0
9 8 oveq2i P 1 1 = P 0
10 5 exp0d P P 0 = 1
11 9 10 eqtrid P P 1 1 = 1
12 11 oveq1d P P 1 1 P 1 = 1 P 1
13 ax-1cn 1
14 subcl P 1 P 1
15 5 13 14 sylancl P P 1
16 15 mulid2d P 1 P 1 = P 1
17 12 16 eqtrd P P 1 1 P 1 = P 1
18 3 7 17 3eqtr3d P ϕ P = P 1