| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmnn |
|
| 2 |
|
nnnn0 |
|
| 3 |
|
nnexpcl |
|
| 4 |
1 2 3
|
syl2an |
|
| 5 |
|
phival |
|
| 6 |
4 5
|
syl |
|
| 7 |
|
nnm1nn0 |
|
| 8 |
|
nnexpcl |
|
| 9 |
1 7 8
|
syl2an |
|
| 10 |
9
|
nncnd |
|
| 11 |
1
|
nncnd |
|
| 12 |
11
|
adantr |
|
| 13 |
|
ax-1cn |
|
| 14 |
|
subdi |
|
| 15 |
13 14
|
mp3an3 |
|
| 16 |
10 12 15
|
syl2anc |
|
| 17 |
10
|
mulridd |
|
| 18 |
17
|
oveq2d |
|
| 19 |
|
fzfi |
|
| 20 |
|
ssrab2 |
|
| 21 |
|
ssfi |
|
| 22 |
19 20 21
|
mp2an |
|
| 23 |
|
ssrab2 |
|
| 24 |
|
ssfi |
|
| 25 |
19 23 24
|
mp2an |
|
| 26 |
|
inrab |
|
| 27 |
|
elfzelz |
|
| 28 |
|
prmz |
|
| 29 |
|
rpexp |
|
| 30 |
28 29
|
syl3an1 |
|
| 31 |
30
|
3expa |
|
| 32 |
31
|
an32s |
|
| 33 |
|
simpr |
|
| 34 |
|
zexpcl |
|
| 35 |
28 2 34
|
syl2an |
|
| 36 |
35
|
adantr |
|
| 37 |
33 36
|
gcdcomd |
|
| 38 |
37
|
eqeq1d |
|
| 39 |
|
coprm |
|
| 40 |
39
|
adantlr |
|
| 41 |
32 38 40
|
3bitr4d |
|
| 42 |
|
zcn |
|
| 43 |
42
|
adantl |
|
| 44 |
43
|
subid1d |
|
| 45 |
44
|
breq2d |
|
| 46 |
45
|
notbid |
|
| 47 |
41 46
|
bitr4d |
|
| 48 |
27 47
|
sylan2 |
|
| 49 |
48
|
biimpd |
|
| 50 |
|
imnan |
|
| 51 |
49 50
|
sylib |
|
| 52 |
51
|
ralrimiva |
|
| 53 |
|
rabeq0 |
|
| 54 |
52 53
|
sylibr |
|
| 55 |
26 54
|
eqtrid |
|
| 56 |
|
hashun |
|
| 57 |
22 25 55 56
|
mp3an12i |
|
| 58 |
|
unrab |
|
| 59 |
48
|
biimprd |
|
| 60 |
59
|
con1d |
|
| 61 |
60
|
orrd |
|
| 62 |
61
|
ralrimiva |
|
| 63 |
|
rabid2 |
|
| 64 |
62 63
|
sylibr |
|
| 65 |
58 64
|
eqtr4id |
|
| 66 |
65
|
fveq2d |
|
| 67 |
4
|
nnnn0d |
|
| 68 |
|
hashfz1 |
|
| 69 |
67 68
|
syl |
|
| 70 |
|
expm1t |
|
| 71 |
11 70
|
sylan |
|
| 72 |
66 69 71
|
3eqtrd |
|
| 73 |
1
|
adantr |
|
| 74 |
|
1zzd |
|
| 75 |
|
nn0uz |
|
| 76 |
|
1m1e0 |
|
| 77 |
76
|
fveq2i |
|
| 78 |
75 77
|
eqtr4i |
|
| 79 |
67 78
|
eleqtrdi |
|
| 80 |
|
0zd |
|
| 81 |
73 74 79 80
|
hashdvds |
|
| 82 |
4
|
nncnd |
|
| 83 |
82
|
subid1d |
|
| 84 |
83
|
oveq1d |
|
| 85 |
73
|
nnne0d |
|
| 86 |
|
nnz |
|
| 87 |
86
|
adantl |
|
| 88 |
12 85 87
|
expm1d |
|
| 89 |
84 88
|
eqtr4d |
|
| 90 |
89
|
fveq2d |
|
| 91 |
9
|
nnzd |
|
| 92 |
|
flid |
|
| 93 |
91 92
|
syl |
|
| 94 |
90 93
|
eqtrd |
|
| 95 |
76
|
oveq1i |
|
| 96 |
|
0m0e0 |
|
| 97 |
95 96
|
eqtri |
|
| 98 |
97
|
oveq1i |
|
| 99 |
12 85
|
div0d |
|
| 100 |
98 99
|
eqtrid |
|
| 101 |
100
|
fveq2d |
|
| 102 |
|
0z |
|
| 103 |
|
flid |
|
| 104 |
102 103
|
ax-mp |
|
| 105 |
101 104
|
eqtrdi |
|
| 106 |
94 105
|
oveq12d |
|
| 107 |
10
|
subid1d |
|
| 108 |
81 106 107
|
3eqtrd |
|
| 109 |
108
|
oveq2d |
|
| 110 |
|
hashcl |
|
| 111 |
22 110
|
ax-mp |
|
| 112 |
111
|
nn0cni |
|
| 113 |
|
addcom |
|
| 114 |
112 10 113
|
sylancr |
|
| 115 |
109 114
|
eqtrd |
|
| 116 |
57 72 115
|
3eqtr3rd |
|
| 117 |
10 12
|
mulcld |
|
| 118 |
112
|
a1i |
|
| 119 |
117 10 118
|
subaddd |
|
| 120 |
116 119
|
mpbird |
|
| 121 |
16 18 120
|
3eqtrrd |
|
| 122 |
6 121
|
eqtrd |
|