Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
Euler's theorem
phival
Next ⟩
phicl2
Metamath Proof Explorer
Ascii
Unicode
Theorem
phival
Description:
Value of the Euler
phi
function.
(Contributed by
Mario Carneiro
, 23-Feb-2014)
Ref
Expression
Assertion
phival
⊢
N
∈
ℕ
→
ϕ
⁡
N
=
x
∈
1
…
N
|
x
gcd
N
=
1
Proof
Step
Hyp
Ref
Expression
1
oveq2
⊢
n
=
N
→
1
…
n
=
1
…
N
2
oveq2
⊢
n
=
N
→
x
gcd
n
=
x
gcd
N
3
2
eqeq1d
⊢
n
=
N
→
x
gcd
n
=
1
↔
x
gcd
N
=
1
4
1
3
rabeqbidv
⊢
n
=
N
→
x
∈
1
…
n
|
x
gcd
n
=
1
=
x
∈
1
…
N
|
x
gcd
N
=
1
5
4
fveq2d
⊢
n
=
N
→
x
∈
1
…
n
|
x
gcd
n
=
1
=
x
∈
1
…
N
|
x
gcd
N
=
1
6
df-phi
⊢
ϕ
=
n
∈
ℕ
⟼
x
∈
1
…
n
|
x
gcd
n
=
1
7
fvex
⊢
x
∈
1
…
N
|
x
gcd
N
=
1
∈
V
8
5
6
7
fvmpt
⊢
N
∈
ℕ
→
ϕ
⁡
N
=
x
∈
1
…
N
|
x
gcd
N
=
1