Metamath Proof Explorer


Theorem phlbase

Description: The base set of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013) (Revised by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis phlfn.h H = Base ndx B + ndx + ˙ Scalar ndx T ndx · ˙ 𝑖 ndx , ˙
Assertion phlbase B X B = Base H

Proof

Step Hyp Ref Expression
1 phlfn.h H = Base ndx B + ndx + ˙ Scalar ndx T ndx · ˙ 𝑖 ndx , ˙
2 1 phlstr H Struct 1 8
3 baseid Base = Slot Base ndx
4 snsstp1 Base ndx B Base ndx B + ndx + ˙ Scalar ndx T
5 ssun1 Base ndx B + ndx + ˙ Scalar ndx T Base ndx B + ndx + ˙ Scalar ndx T ndx · ˙ 𝑖 ndx , ˙
6 5 1 sseqtrri Base ndx B + ndx + ˙ Scalar ndx T H
7 4 6 sstri Base ndx B H
8 2 3 7 strfv B X B = Base H