Metamath Proof Explorer


Theorem phlip

Description: The inner product (Hermitian form) operation of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013) (Revised by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis phlfn.h H = Base ndx B + ndx + ˙ Scalar ndx T ndx · ˙ 𝑖 ndx , ˙
Assertion phlip , ˙ X , ˙ = 𝑖 H

Proof

Step Hyp Ref Expression
1 phlfn.h H = Base ndx B + ndx + ˙ Scalar ndx T ndx · ˙ 𝑖 ndx , ˙
2 1 phlstr H Struct 1 8
3 ipid 𝑖 = Slot 𝑖 ndx
4 snsspr2 𝑖 ndx , ˙ ndx · ˙ 𝑖 ndx , ˙
5 ssun2 ndx · ˙ 𝑖 ndx , ˙ Base ndx B + ndx + ˙ Scalar ndx T ndx · ˙ 𝑖 ndx , ˙
6 5 1 sseqtrri ndx · ˙ 𝑖 ndx , ˙ H
7 4 6 sstri 𝑖 ndx , ˙ H
8 2 3 7 strfv , ˙ X , ˙ = 𝑖 H