Database
BASIC ALGEBRAIC STRUCTURES
Generalized pre-Hilbert and Hilbert spaces
Definition and basic properties
phlipf
Next ⟩
ip2eq
Metamath Proof Explorer
Ascii
Unicode
Theorem
phlipf
Description:
The inner product operation is a function.
(Contributed by
Mario Carneiro
, 14-Aug-2015)
Ref
Expression
Hypotheses
ipffn.1
⊢
V
=
Base
W
ipffn.2
⊢
,
˙
=
⋅
if
⁡
W
phlipf.s
⊢
S
=
Scalar
⁡
W
phlipf.k
⊢
K
=
Base
S
Assertion
phlipf
⊢
W
∈
PreHil
→
,
˙
:
V
×
V
⟶
K
Proof
Step
Hyp
Ref
Expression
1
ipffn.1
⊢
V
=
Base
W
2
ipffn.2
⊢
,
˙
=
⋅
if
⁡
W
3
phlipf.s
⊢
S
=
Scalar
⁡
W
4
phlipf.k
⊢
K
=
Base
S
5
eqid
⊢
⋅
𝑖
⁡
W
=
⋅
𝑖
⁡
W
6
3
5
1
4
ipcl
⊢
W
∈
PreHil
∧
x
∈
V
∧
y
∈
V
→
x
⋅
𝑖
⁡
W
y
∈
K
7
6
3expb
⊢
W
∈
PreHil
∧
x
∈
V
∧
y
∈
V
→
x
⋅
𝑖
⁡
W
y
∈
K
8
7
ralrimivva
⊢
W
∈
PreHil
→
∀
x
∈
V
∀
y
∈
V
x
⋅
𝑖
⁡
W
y
∈
K
9
1
5
2
ipffval
⊢
,
˙
=
x
∈
V
,
y
∈
V
⟼
x
⋅
𝑖
⁡
W
y
10
9
fmpo
⊢
∀
x
∈
V
∀
y
∈
V
x
⋅
𝑖
⁡
W
y
∈
K
↔
,
˙
:
V
×
V
⟶
K
11
8
10
sylib
⊢
W
∈
PreHil
→
,
˙
:
V
×
V
⟶
K