Metamath Proof Explorer


Theorem phlipf

Description: The inner product operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses ipffn.1 V = Base W
ipffn.2 , ˙ = if W
phlipf.s S = Scalar W
phlipf.k K = Base S
Assertion phlipf W PreHil , ˙ : V × V K

Proof

Step Hyp Ref Expression
1 ipffn.1 V = Base W
2 ipffn.2 , ˙ = if W
3 phlipf.s S = Scalar W
4 phlipf.k K = Base S
5 eqid 𝑖 W = 𝑖 W
6 3 5 1 4 ipcl W PreHil x V y V x 𝑖 W y K
7 6 3expb W PreHil x V y V x 𝑖 W y K
8 7 ralrimivva W PreHil x V y V x 𝑖 W y K
9 1 5 2 ipffval , ˙ = x V , y V x 𝑖 W y
10 9 fmpo x V y V x 𝑖 W y K , ˙ : V × V K
11 8 10 sylib W PreHil , ˙ : V × V K