Database
BASIC ALGEBRAIC STRUCTURES
Generalized pre-Hilbert and Hilbert spaces
Definition and basic properties
phllvec
Next ⟩
phllmod
Metamath Proof Explorer
Ascii
Unicode
Theorem
phllvec
Description:
A pre-Hilbert space is a left vector space.
(Contributed by
Mario Carneiro
, 7-Oct-2015)
Ref
Expression
Assertion
phllvec
⊢
W
∈
PreHil
→
W
∈
LVec
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
Base
W
=
Base
W
2
eqid
⊢
Scalar
⁡
W
=
Scalar
⁡
W
3
eqid
⊢
⋅
𝑖
⁡
W
=
⋅
𝑖
⁡
W
4
eqid
⊢
0
W
=
0
W
5
eqid
⊢
*
Scalar
⁡
W
=
*
Scalar
⁡
W
6
eqid
⊢
0
Scalar
⁡
W
=
0
Scalar
⁡
W
7
1
2
3
4
5
6
isphl
⊢
W
∈
PreHil
↔
W
∈
LVec
∧
Scalar
⁡
W
∈
*-Ring
∧
∀
x
∈
Base
W
y
∈
Base
W
⟼
y
⋅
𝑖
⁡
W
x
∈
W
LMHom
ringLMod
⁡
Scalar
⁡
W
∧
x
⋅
𝑖
⁡
W
x
=
0
Scalar
⁡
W
→
x
=
0
W
∧
∀
y
∈
Base
W
x
⋅
𝑖
⁡
W
y
*
Scalar
⁡
W
=
y
⋅
𝑖
⁡
W
x
8
7
simp1bi
⊢
W
∈
PreHil
→
W
∈
LVec