Metamath Proof Explorer


Theorem phllvec

Description: A pre-Hilbert space is a left vector space. (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Assertion phllvec W PreHil W LVec

Proof

Step Hyp Ref Expression
1 eqid Base W = Base W
2 eqid Scalar W = Scalar W
3 eqid 𝑖 W = 𝑖 W
4 eqid 0 W = 0 W
5 eqid * Scalar W = * Scalar W
6 eqid 0 Scalar W = 0 Scalar W
7 1 2 3 4 5 6 isphl W PreHil W LVec Scalar W *-Ring x Base W y Base W y 𝑖 W x W LMHom ringLMod Scalar W x 𝑖 W x = 0 Scalar W x = 0 W y Base W x 𝑖 W y * Scalar W = y 𝑖 W x
8 7 simp1bi W PreHil W LVec