Metamath Proof Explorer


Theorem phlplusg

Description: The additive operation of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013) (Revised by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis phlfn.h H = Base ndx B + ndx + ˙ Scalar ndx T ndx · ˙ 𝑖 ndx , ˙
Assertion phlplusg + ˙ X + ˙ = + H

Proof

Step Hyp Ref Expression
1 phlfn.h H = Base ndx B + ndx + ˙ Scalar ndx T ndx · ˙ 𝑖 ndx , ˙
2 1 phlstr H Struct 1 8
3 plusgid + 𝑔 = Slot + ndx
4 snsstp2 + ndx + ˙ Base ndx B + ndx + ˙ Scalar ndx T
5 ssun1 Base ndx B + ndx + ˙ Scalar ndx T Base ndx B + ndx + ˙ Scalar ndx T ndx · ˙ 𝑖 ndx , ˙
6 5 1 sseqtrri Base ndx B + ndx + ˙ Scalar ndx T H
7 4 6 sstri + ndx + ˙ H
8 2 3 7 strfv + ˙ X + ˙ = + H