Metamath Proof Explorer


Theorem phlpropd

Description: If two structures have the same components (properties), one is a pre-Hilbert space iff the other one is. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses phlpropd.1 φ B = Base K
phlpropd.2 φ B = Base L
phlpropd.3 φ x B y B x + K y = x + L y
phlpropd.4 φ F = Scalar K
phlpropd.5 φ F = Scalar L
phlpropd.6 P = Base F
phlpropd.7 φ x P y B x K y = x L y
phlpropd.8 φ x B y B x 𝑖 K y = x 𝑖 L y
Assertion phlpropd φ K PreHil L PreHil

Proof

Step Hyp Ref Expression
1 phlpropd.1 φ B = Base K
2 phlpropd.2 φ B = Base L
3 phlpropd.3 φ x B y B x + K y = x + L y
4 phlpropd.4 φ F = Scalar K
5 phlpropd.5 φ F = Scalar L
6 phlpropd.6 P = Base F
7 phlpropd.7 φ x P y B x K y = x L y
8 phlpropd.8 φ x B y B x 𝑖 K y = x 𝑖 L y
9 1 2 3 4 5 6 7 lvecpropd φ K LVec L LVec
10 4 5 eqtr3d φ Scalar K = Scalar L
11 10 eleq1d φ Scalar K *-Ring Scalar L *-Ring
12 8 oveqrspc2v φ b B a B b 𝑖 K a = b 𝑖 L a
13 12 anass1rs φ a B b B b 𝑖 K a = b 𝑖 L a
14 13 mpteq2dva φ a B b B b 𝑖 K a = b B b 𝑖 L a
15 1 adantr φ a B B = Base K
16 15 mpteq1d φ a B b B b 𝑖 K a = b Base K b 𝑖 K a
17 2 adantr φ a B B = Base L
18 17 mpteq1d φ a B b B b 𝑖 L a = b Base L b 𝑖 L a
19 14 16 18 3eqtr3d φ a B b Base K b 𝑖 K a = b Base L b 𝑖 L a
20 rlmbas Base F = Base ringLMod F
21 6 20 eqtri P = Base ringLMod F
22 21 a1i φ P = Base ringLMod F
23 fvex Scalar K V
24 4 23 eqeltrdi φ F V
25 rlmsca F V F = Scalar ringLMod F
26 24 25 syl φ F = Scalar ringLMod F
27 eqidd φ x P y P x + ringLMod F y = x + ringLMod F y
28 eqidd φ x P y P x ringLMod F y = x ringLMod F y
29 1 22 2 22 4 26 5 26 6 6 3 27 7 28 lmhmpropd φ K LMHom ringLMod F = L LMHom ringLMod F
30 4 fveq2d φ ringLMod F = ringLMod Scalar K
31 30 oveq2d φ K LMHom ringLMod F = K LMHom ringLMod Scalar K
32 5 fveq2d φ ringLMod F = ringLMod Scalar L
33 32 oveq2d φ L LMHom ringLMod F = L LMHom ringLMod Scalar L
34 29 31 33 3eqtr3d φ K LMHom ringLMod Scalar K = L LMHom ringLMod Scalar L
35 34 adantr φ a B K LMHom ringLMod Scalar K = L LMHom ringLMod Scalar L
36 19 35 eleq12d φ a B b Base K b 𝑖 K a K LMHom ringLMod Scalar K b Base L b 𝑖 L a L LMHom ringLMod Scalar L
37 8 oveqrspc2v φ a B a B a 𝑖 K a = a 𝑖 L a
38 37 anabsan2 φ a B a 𝑖 K a = a 𝑖 L a
39 10 fveq2d φ 0 Scalar K = 0 Scalar L
40 39 adantr φ a B 0 Scalar K = 0 Scalar L
41 38 40 eqeq12d φ a B a 𝑖 K a = 0 Scalar K a 𝑖 L a = 0 Scalar L
42 1 2 3 grpidpropd φ 0 K = 0 L
43 42 adantr φ a B 0 K = 0 L
44 43 eqeq2d φ a B a = 0 K a = 0 L
45 41 44 imbi12d φ a B a 𝑖 K a = 0 Scalar K a = 0 K a 𝑖 L a = 0 Scalar L a = 0 L
46 10 fveq2d φ * Scalar K = * Scalar L
47 46 adantr φ a B b B * Scalar K = * Scalar L
48 8 oveqrspc2v φ a B b B a 𝑖 K b = a 𝑖 L b
49 47 48 fveq12d φ a B b B a 𝑖 K b * Scalar K = a 𝑖 L b * Scalar L
50 49 anassrs φ a B b B a 𝑖 K b * Scalar K = a 𝑖 L b * Scalar L
51 50 13 eqeq12d φ a B b B a 𝑖 K b * Scalar K = b 𝑖 K a a 𝑖 L b * Scalar L = b 𝑖 L a
52 51 ralbidva φ a B b B a 𝑖 K b * Scalar K = b 𝑖 K a b B a 𝑖 L b * Scalar L = b 𝑖 L a
53 15 raleqdv φ a B b B a 𝑖 K b * Scalar K = b 𝑖 K a b Base K a 𝑖 K b * Scalar K = b 𝑖 K a
54 17 raleqdv φ a B b B a 𝑖 L b * Scalar L = b 𝑖 L a b Base L a 𝑖 L b * Scalar L = b 𝑖 L a
55 52 53 54 3bitr3d φ a B b Base K a 𝑖 K b * Scalar K = b 𝑖 K a b Base L a 𝑖 L b * Scalar L = b 𝑖 L a
56 36 45 55 3anbi123d φ a B b Base K b 𝑖 K a K LMHom ringLMod Scalar K a 𝑖 K a = 0 Scalar K a = 0 K b Base K a 𝑖 K b * Scalar K = b 𝑖 K a b Base L b 𝑖 L a L LMHom ringLMod Scalar L a 𝑖 L a = 0 Scalar L a = 0 L b Base L a 𝑖 L b * Scalar L = b 𝑖 L a
57 56 ralbidva φ a B b Base K b 𝑖 K a K LMHom ringLMod Scalar K a 𝑖 K a = 0 Scalar K a = 0 K b Base K a 𝑖 K b * Scalar K = b 𝑖 K a a B b Base L b 𝑖 L a L LMHom ringLMod Scalar L a 𝑖 L a = 0 Scalar L a = 0 L b Base L a 𝑖 L b * Scalar L = b 𝑖 L a
58 1 raleqdv φ a B b Base K b 𝑖 K a K LMHom ringLMod Scalar K a 𝑖 K a = 0 Scalar K a = 0 K b Base K a 𝑖 K b * Scalar K = b 𝑖 K a a Base K b Base K b 𝑖 K a K LMHom ringLMod Scalar K a 𝑖 K a = 0 Scalar K a = 0 K b Base K a 𝑖 K b * Scalar K = b 𝑖 K a
59 2 raleqdv φ a B b Base L b 𝑖 L a L LMHom ringLMod Scalar L a 𝑖 L a = 0 Scalar L a = 0 L b Base L a 𝑖 L b * Scalar L = b 𝑖 L a a Base L b Base L b 𝑖 L a L LMHom ringLMod Scalar L a 𝑖 L a = 0 Scalar L a = 0 L b Base L a 𝑖 L b * Scalar L = b 𝑖 L a
60 57 58 59 3bitr3d φ a Base K b Base K b 𝑖 K a K LMHom ringLMod Scalar K a 𝑖 K a = 0 Scalar K a = 0 K b Base K a 𝑖 K b * Scalar K = b 𝑖 K a a Base L b Base L b 𝑖 L a L LMHom ringLMod Scalar L a 𝑖 L a = 0 Scalar L a = 0 L b Base L a 𝑖 L b * Scalar L = b 𝑖 L a
61 9 11 60 3anbi123d φ K LVec Scalar K *-Ring a Base K b Base K b 𝑖 K a K LMHom ringLMod Scalar K a 𝑖 K a = 0 Scalar K a = 0 K b Base K a 𝑖 K b * Scalar K = b 𝑖 K a L LVec Scalar L *-Ring a Base L b Base L b 𝑖 L a L LMHom ringLMod Scalar L a 𝑖 L a = 0 Scalar L a = 0 L b Base L a 𝑖 L b * Scalar L = b 𝑖 L a
62 eqid Base K = Base K
63 eqid Scalar K = Scalar K
64 eqid 𝑖 K = 𝑖 K
65 eqid 0 K = 0 K
66 eqid * Scalar K = * Scalar K
67 eqid 0 Scalar K = 0 Scalar K
68 62 63 64 65 66 67 isphl K PreHil K LVec Scalar K *-Ring a Base K b Base K b 𝑖 K a K LMHom ringLMod Scalar K a 𝑖 K a = 0 Scalar K a = 0 K b Base K a 𝑖 K b * Scalar K = b 𝑖 K a
69 eqid Base L = Base L
70 eqid Scalar L = Scalar L
71 eqid 𝑖 L = 𝑖 L
72 eqid 0 L = 0 L
73 eqid * Scalar L = * Scalar L
74 eqid 0 Scalar L = 0 Scalar L
75 69 70 71 72 73 74 isphl L PreHil L LVec Scalar L *-Ring a Base L b Base L b 𝑖 L a L LMHom ringLMod Scalar L a 𝑖 L a = 0 Scalar L a = 0 L b Base L a 𝑖 L b * Scalar L = b 𝑖 L a
76 61 68 75 3bitr4g φ K PreHil L PreHil