Step |
Hyp |
Ref |
Expression |
1 |
|
phlpropd.1 |
|
2 |
|
phlpropd.2 |
|
3 |
|
phlpropd.3 |
|
4 |
|
phlpropd.4 |
|
5 |
|
phlpropd.5 |
|
6 |
|
phlpropd.6 |
|
7 |
|
phlpropd.7 |
|
8 |
|
phlpropd.8 |
|
9 |
1 2 3 4 5 6 7
|
lvecpropd |
|
10 |
4 5
|
eqtr3d |
|
11 |
10
|
eleq1d |
|
12 |
8
|
oveqrspc2v |
|
13 |
12
|
anass1rs |
|
14 |
13
|
mpteq2dva |
|
15 |
1
|
adantr |
|
16 |
15
|
mpteq1d |
|
17 |
2
|
adantr |
|
18 |
17
|
mpteq1d |
|
19 |
14 16 18
|
3eqtr3d |
|
20 |
|
rlmbas |
|
21 |
6 20
|
eqtri |
|
22 |
21
|
a1i |
|
23 |
|
fvex |
|
24 |
4 23
|
eqeltrdi |
|
25 |
|
rlmsca |
|
26 |
24 25
|
syl |
|
27 |
|
eqidd |
|
28 |
|
eqidd |
|
29 |
1 22 2 22 4 26 5 26 6 6 3 27 7 28
|
lmhmpropd |
|
30 |
4
|
fveq2d |
|
31 |
30
|
oveq2d |
|
32 |
5
|
fveq2d |
|
33 |
32
|
oveq2d |
|
34 |
29 31 33
|
3eqtr3d |
|
35 |
34
|
adantr |
|
36 |
19 35
|
eleq12d |
|
37 |
8
|
oveqrspc2v |
|
38 |
37
|
anabsan2 |
|
39 |
10
|
fveq2d |
|
40 |
39
|
adantr |
|
41 |
38 40
|
eqeq12d |
|
42 |
1 2 3
|
grpidpropd |
|
43 |
42
|
adantr |
|
44 |
43
|
eqeq2d |
|
45 |
41 44
|
imbi12d |
|
46 |
10
|
fveq2d |
|
47 |
46
|
adantr |
|
48 |
8
|
oveqrspc2v |
|
49 |
47 48
|
fveq12d |
|
50 |
49
|
anassrs |
|
51 |
50 13
|
eqeq12d |
|
52 |
51
|
ralbidva |
|
53 |
15
|
raleqdv |
|
54 |
17
|
raleqdv |
|
55 |
52 53 54
|
3bitr3d |
|
56 |
36 45 55
|
3anbi123d |
|
57 |
56
|
ralbidva |
|
58 |
1
|
raleqdv |
|
59 |
2
|
raleqdv |
|
60 |
57 58 59
|
3bitr3d |
|
61 |
9 11 60
|
3anbi123d |
|
62 |
|
eqid |
|
63 |
|
eqid |
|
64 |
|
eqid |
|
65 |
|
eqid |
|
66 |
|
eqid |
|
67 |
|
eqid |
|
68 |
62 63 64 65 66 67
|
isphl |
|
69 |
|
eqid |
|
70 |
|
eqid |
|
71 |
|
eqid |
|
72 |
|
eqid |
|
73 |
|
eqid |
|
74 |
|
eqid |
|
75 |
69 70 71 72 73 74
|
isphl |
|
76 |
61 68 75
|
3bitr4g |
|