Metamath Proof Explorer


Theorem phlssphl

Description: A subspace of an inner product space (pre-Hilbert space) is an inner product space. (Contributed by AV, 25-Sep-2022)

Ref Expression
Hypotheses phlssphl.x X = W 𝑠 U
phlssphl.s S = LSubSp W
Assertion phlssphl W PreHil U S X PreHil

Proof

Step Hyp Ref Expression
1 phlssphl.x X = W 𝑠 U
2 phlssphl.s S = LSubSp W
3 eqidd W PreHil U S Base X = Base X
4 eqidd W PreHil U S + X = + X
5 eqidd W PreHil U S X = X
6 eqidd W PreHil U S 𝑖 X = 𝑖 X
7 phllmod W PreHil W LMod
8 eqid 0 W = 0 W
9 eqid 0 X = 0 X
10 1 8 9 2 lss0v W LMod U S 0 X = 0 W
11 7 10 sylan W PreHil U S 0 X = 0 W
12 11 eqcomd W PreHil U S 0 W = 0 X
13 eqidd W PreHil U S Scalar X = Scalar X
14 eqidd W PreHil U S Base Scalar X = Base Scalar X
15 eqidd W PreHil U S + Scalar X = + Scalar X
16 eqidd W PreHil U S Scalar X = Scalar X
17 eqidd W PreHil U S * Scalar X = * Scalar X
18 eqidd W PreHil U S 0 Scalar X = 0 Scalar X
19 phllvec W PreHil W LVec
20 1 2 lsslvec W LVec U S X LVec
21 19 20 sylan W PreHil U S X LVec
22 eqid Scalar W = Scalar W
23 1 22 resssca U S Scalar W = Scalar X
24 23 eqcomd U S Scalar X = Scalar W
25 24 adantl W PreHil U S Scalar X = Scalar W
26 22 phlsrng W PreHil Scalar W *-Ring
27 26 adantr W PreHil U S Scalar W *-Ring
28 25 27 eqeltrd W PreHil U S Scalar X *-Ring
29 simpl W PreHil U S W PreHil
30 eqid Base W = Base W
31 1 30 ressbasss Base X Base W
32 31 sseli x Base X x Base W
33 31 sseli y Base X y Base W
34 eqid 𝑖 W = 𝑖 W
35 eqid Base Scalar W = Base Scalar W
36 22 34 30 35 ipcl W PreHil x Base W y Base W x 𝑖 W y Base Scalar W
37 29 32 33 36 syl3an W PreHil U S x Base X y Base X x 𝑖 W y Base Scalar W
38 24 fveq2d U S Base Scalar X = Base Scalar W
39 38 eleq2d U S x 𝑖 W y Base Scalar X x 𝑖 W y Base Scalar W
40 39 adantl W PreHil U S x 𝑖 W y Base Scalar X x 𝑖 W y Base Scalar W
41 40 3ad2ant1 W PreHil U S x Base X y Base X x 𝑖 W y Base Scalar X x 𝑖 W y Base Scalar W
42 37 41 mpbird W PreHil U S x Base X y Base X x 𝑖 W y Base Scalar X
43 eqid 𝑖 X = 𝑖 X
44 1 34 43 ssipeq U S 𝑖 X = 𝑖 W
45 44 oveqd U S x 𝑖 X y = x 𝑖 W y
46 45 eleq1d U S x 𝑖 X y Base Scalar X x 𝑖 W y Base Scalar X
47 46 adantl W PreHil U S x 𝑖 X y Base Scalar X x 𝑖 W y Base Scalar X
48 47 3ad2ant1 W PreHil U S x Base X y Base X x 𝑖 X y Base Scalar X x 𝑖 W y Base Scalar X
49 42 48 mpbird W PreHil U S x Base X y Base X x 𝑖 X y Base Scalar X
50 29 3ad2ant1 W PreHil U S q Base Scalar X x Base X y Base X z Base X W PreHil
51 7 adantr W PreHil U S W LMod
52 51 3ad2ant1 W PreHil U S q Base Scalar X x Base X y Base X z Base X W LMod
53 25 fveq2d W PreHil U S Base Scalar X = Base Scalar W
54 53 eleq2d W PreHil U S q Base Scalar X q Base Scalar W
55 54 biimpa W PreHil U S q Base Scalar X q Base Scalar W
56 55 3adant3 W PreHil U S q Base Scalar X x Base X y Base X z Base X q Base Scalar W
57 32 3ad2ant1 x Base X y Base X z Base X x Base W
58 57 3ad2ant3 W PreHil U S q Base Scalar X x Base X y Base X z Base X x Base W
59 eqid W = W
60 30 22 59 35 lmodvscl W LMod q Base Scalar W x Base W q W x Base W
61 52 56 58 60 syl3anc W PreHil U S q Base Scalar X x Base X y Base X z Base X q W x Base W
62 33 3ad2ant2 x Base X y Base X z Base X y Base W
63 62 3ad2ant3 W PreHil U S q Base Scalar X x Base X y Base X z Base X y Base W
64 31 sseli z Base X z Base W
65 64 3ad2ant3 x Base X y Base X z Base X z Base W
66 65 3ad2ant3 W PreHil U S q Base Scalar X x Base X y Base X z Base X z Base W
67 eqid + W = + W
68 eqid + Scalar W = + Scalar W
69 22 34 30 67 68 ipdir W PreHil q W x Base W y Base W z Base W q W x + W y 𝑖 W z = q W x 𝑖 W z + Scalar W y 𝑖 W z
70 50 61 63 66 69 syl13anc W PreHil U S q Base Scalar X x Base X y Base X z Base X q W x + W y 𝑖 W z = q W x 𝑖 W z + Scalar W y 𝑖 W z
71 eqid Scalar W = Scalar W
72 22 34 30 35 59 71 ipass W PreHil q Base Scalar W x Base W z Base W q W x 𝑖 W z = q Scalar W x 𝑖 W z
73 50 56 58 66 72 syl13anc W PreHil U S q Base Scalar X x Base X y Base X z Base X q W x 𝑖 W z = q Scalar W x 𝑖 W z
74 73 oveq1d W PreHil U S q Base Scalar X x Base X y Base X z Base X q W x 𝑖 W z + Scalar W y 𝑖 W z = q Scalar W x 𝑖 W z + Scalar W y 𝑖 W z
75 70 74 eqtrd W PreHil U S q Base Scalar X x Base X y Base X z Base X q W x + W y 𝑖 W z = q Scalar W x 𝑖 W z + Scalar W y 𝑖 W z
76 1 67 ressplusg U S + W = + X
77 76 eqcomd U S + X = + W
78 1 59 ressvsca U S W = X
79 78 eqcomd U S X = W
80 79 oveqd U S q X x = q W x
81 eqidd U S y = y
82 77 80 81 oveq123d U S q X x + X y = q W x + W y
83 eqidd U S z = z
84 44 82 83 oveq123d U S q X x + X y 𝑖 X z = q W x + W y 𝑖 W z
85 24 fveq2d U S + Scalar X = + Scalar W
86 24 fveq2d U S Scalar X = Scalar W
87 eqidd U S q = q
88 44 oveqd U S x 𝑖 X z = x 𝑖 W z
89 86 87 88 oveq123d U S q Scalar X x 𝑖 X z = q Scalar W x 𝑖 W z
90 44 oveqd U S y 𝑖 X z = y 𝑖 W z
91 85 89 90 oveq123d U S q Scalar X x 𝑖 X z + Scalar X y 𝑖 X z = q Scalar W x 𝑖 W z + Scalar W y 𝑖 W z
92 84 91 eqeq12d U S q X x + X y 𝑖 X z = q Scalar X x 𝑖 X z + Scalar X y 𝑖 X z q W x + W y 𝑖 W z = q Scalar W x 𝑖 W z + Scalar W y 𝑖 W z
93 92 adantl W PreHil U S q X x + X y 𝑖 X z = q Scalar X x 𝑖 X z + Scalar X y 𝑖 X z q W x + W y 𝑖 W z = q Scalar W x 𝑖 W z + Scalar W y 𝑖 W z
94 93 3ad2ant1 W PreHil U S q Base Scalar X x Base X y Base X z Base X q X x + X y 𝑖 X z = q Scalar X x 𝑖 X z + Scalar X y 𝑖 X z q W x + W y 𝑖 W z = q Scalar W x 𝑖 W z + Scalar W y 𝑖 W z
95 75 94 mpbird W PreHil U S q Base Scalar X x Base X y Base X z Base X q X x + X y 𝑖 X z = q Scalar X x 𝑖 X z + Scalar X y 𝑖 X z
96 44 adantl W PreHil U S 𝑖 X = 𝑖 W
97 96 oveqdr W PreHil U S x Base X x 𝑖 X x = x 𝑖 W x
98 24 fveq2d U S 0 Scalar X = 0 Scalar W
99 98 adantl W PreHil U S 0 Scalar X = 0 Scalar W
100 99 adantr W PreHil U S x Base X 0 Scalar X = 0 Scalar W
101 97 100 eqeq12d W PreHil U S x Base X x 𝑖 X x = 0 Scalar X x 𝑖 W x = 0 Scalar W
102 eqid 0 Scalar W = 0 Scalar W
103 22 34 30 102 8 ipeq0 W PreHil x Base W x 𝑖 W x = 0 Scalar W x = 0 W
104 29 32 103 syl2an W PreHil U S x Base X x 𝑖 W x = 0 Scalar W x = 0 W
105 104 biimpd W PreHil U S x Base X x 𝑖 W x = 0 Scalar W x = 0 W
106 101 105 sylbid W PreHil U S x Base X x 𝑖 X x = 0 Scalar X x = 0 W
107 106 3impia W PreHil U S x Base X x 𝑖 X x = 0 Scalar X x = 0 W
108 24 fveq2d U S * Scalar X = * Scalar W
109 108 fveq1d U S x 𝑖 W y * Scalar X = x 𝑖 W y * Scalar W
110 109 adantl W PreHil U S x 𝑖 W y * Scalar X = x 𝑖 W y * Scalar W
111 110 3ad2ant1 W PreHil U S x Base X y Base X x 𝑖 W y * Scalar X = x 𝑖 W y * Scalar W
112 eqid * Scalar W = * Scalar W
113 22 34 30 112 ipcj W PreHil x Base W y Base W x 𝑖 W y * Scalar W = y 𝑖 W x
114 29 32 33 113 syl3an W PreHil U S x Base X y Base X x 𝑖 W y * Scalar W = y 𝑖 W x
115 111 114 eqtrd W PreHil U S x Base X y Base X x 𝑖 W y * Scalar X = y 𝑖 W x
116 45 fveq2d U S x 𝑖 X y * Scalar X = x 𝑖 W y * Scalar X
117 44 oveqd U S y 𝑖 X x = y 𝑖 W x
118 116 117 eqeq12d U S x 𝑖 X y * Scalar X = y 𝑖 X x x 𝑖 W y * Scalar X = y 𝑖 W x
119 118 adantl W PreHil U S x 𝑖 X y * Scalar X = y 𝑖 X x x 𝑖 W y * Scalar X = y 𝑖 W x
120 119 3ad2ant1 W PreHil U S x Base X y Base X x 𝑖 X y * Scalar X = y 𝑖 X x x 𝑖 W y * Scalar X = y 𝑖 W x
121 115 120 mpbird W PreHil U S x Base X y Base X x 𝑖 X y * Scalar X = y 𝑖 X x
122 3 4 5 6 12 13 14 15 16 17 18 21 28 49 95 107 121 isphld W PreHil U S X PreHil