Metamath Proof Explorer


Theorem phlstr

Description: A constructed pre-Hilbert space is a structure. Starting from lmodstr (which has 4 members), we chain strleun once more, adding an ordered pair to the function, to get all 5 members. (Contributed by Mario Carneiro, 1-Oct-2013) (Revised by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis phlfn.h H = Base ndx B + ndx + ˙ Scalar ndx T ndx · ˙ 𝑖 ndx , ˙
Assertion phlstr H Struct 1 8

Proof

Step Hyp Ref Expression
1 phlfn.h H = Base ndx B + ndx + ˙ Scalar ndx T ndx · ˙ 𝑖 ndx , ˙
2 df-pr ndx · ˙ 𝑖 ndx , ˙ = ndx · ˙ 𝑖 ndx , ˙
3 2 uneq2i Base ndx B + ndx + ˙ Scalar ndx T ndx · ˙ 𝑖 ndx , ˙ = Base ndx B + ndx + ˙ Scalar ndx T ndx · ˙ 𝑖 ndx , ˙
4 unass Base ndx B + ndx + ˙ Scalar ndx T ndx · ˙ 𝑖 ndx , ˙ = Base ndx B + ndx + ˙ Scalar ndx T ndx · ˙ 𝑖 ndx , ˙
5 3 1 4 3eqtr4i H = Base ndx B + ndx + ˙ Scalar ndx T ndx · ˙ 𝑖 ndx , ˙
6 eqid Base ndx B + ndx + ˙ Scalar ndx T ndx · ˙ = Base ndx B + ndx + ˙ Scalar ndx T ndx · ˙
7 6 lmodstr Base ndx B + ndx + ˙ Scalar ndx T ndx · ˙ Struct 1 6
8 8nn 8
9 ipndx 𝑖 ndx = 8
10 8 9 strle1 𝑖 ndx , ˙ Struct 8 8
11 6lt8 6 < 8
12 7 10 11 strleun Base ndx B + ndx + ˙ Scalar ndx T ndx · ˙ 𝑖 ndx , ˙ Struct 1 8
13 5 12 eqbrtri H Struct 1 8