Metamath Proof Explorer


Theorem phlvsca

Description: The scalar product operation of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013) (Revised by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis phlfn.h H = Base ndx B + ndx + ˙ Scalar ndx T ndx · ˙ 𝑖 ndx , ˙
Assertion phlvsca · ˙ X · ˙ = H

Proof

Step Hyp Ref Expression
1 phlfn.h H = Base ndx B + ndx + ˙ Scalar ndx T ndx · ˙ 𝑖 ndx , ˙
2 1 phlstr H Struct 1 8
3 vscaid 𝑠 = Slot ndx
4 snsspr1 ndx · ˙ ndx · ˙ 𝑖 ndx , ˙
5 ssun2 ndx · ˙ 𝑖 ndx , ˙ Base ndx B + ndx + ˙ Scalar ndx T ndx · ˙ 𝑖 ndx , ˙
6 5 1 sseqtrri ndx · ˙ 𝑖 ndx , ˙ H
7 4 6 sstri ndx · ˙ H
8 2 3 7 strfv · ˙ X · ˙ = H