Metamath Proof Explorer


Theorem phnv

Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 2-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion phnv U CPreHil OLD U NrmCVec

Proof

Step Hyp Ref Expression
1 df-ph CPreHil OLD = NrmCVec g s n | x ran g y ran g n x g y 2 + n x g -1 s y 2 = 2 n x 2 + n y 2
2 inss1 NrmCVec g s n | x ran g y ran g n x g y 2 + n x g -1 s y 2 = 2 n x 2 + n y 2 NrmCVec
3 1 2 eqsstri CPreHil OLD NrmCVec
4 3 sseli U CPreHil OLD U NrmCVec