Metamath Proof Explorer


Theorem phoeqi

Description: A condition implying that two operators are equal. (Contributed by NM, 25-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses ip2eqi.1 X=BaseSetU
ip2eqi.7 P=𝑖OLDU
ip2eqi.u UCPreHilOLD
Assertion phoeqi S:YXT:YXxXyYxPSy=xPTyS=T

Proof

Step Hyp Ref Expression
1 ip2eqi.1 X=BaseSetU
2 ip2eqi.7 P=𝑖OLDU
3 ip2eqi.u UCPreHilOLD
4 ralcom xXyYxPSy=xPTyyYxXxPSy=xPTy
5 ffvelcdm S:YXyYSyX
6 ffvelcdm T:YXyYTyX
7 1 2 3 ip2eqi SyXTyXxXxPSy=xPTySy=Ty
8 5 6 7 syl2an S:YXyYT:YXyYxXxPSy=xPTySy=Ty
9 8 anandirs S:YXT:YXyYxXxPSy=xPTySy=Ty
10 9 ralbidva S:YXT:YXyYxXxPSy=xPTyyYSy=Ty
11 ffn S:YXSFnY
12 ffn T:YXTFnY
13 eqfnfv SFnYTFnYS=TyYSy=Ty
14 11 12 13 syl2an S:YXT:YXS=TyYSy=Ty
15 10 14 bitr4d S:YXT:YXyYxXxPSy=xPTyS=T
16 4 15 bitrid S:YXT:YXxXyYxPSy=xPTyS=T