Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Pigeonhole Principle
php2
Next ⟩
php3
Metamath Proof Explorer
Ascii
Unicode
Theorem
php2
Description:
Corollary of Pigeonhole Principle.
(Contributed by
NM
, 31-May-1998)
Ref
Expression
Assertion
php2
⊢
A
∈
ω
∧
B
⊂
A
→
B
≺
A
Proof
Step
Hyp
Ref
Expression
1
eleq1
⊢
x
=
A
→
x
∈
ω
↔
A
∈
ω
2
psseq2
⊢
x
=
A
→
B
⊂
x
↔
B
⊂
A
3
1
2
anbi12d
⊢
x
=
A
→
x
∈
ω
∧
B
⊂
x
↔
A
∈
ω
∧
B
⊂
A
4
breq2
⊢
x
=
A
→
B
≺
x
↔
B
≺
A
5
3
4
imbi12d
⊢
x
=
A
→
x
∈
ω
∧
B
⊂
x
→
B
≺
x
↔
A
∈
ω
∧
B
⊂
A
→
B
≺
A
6
vex
⊢
x
∈
V
7
pssss
⊢
B
⊂
x
→
B
⊆
x
8
ssdomg
⊢
x
∈
V
→
B
⊆
x
→
B
≼
x
9
6
7
8
mpsyl
⊢
B
⊂
x
→
B
≼
x
10
9
adantl
⊢
x
∈
ω
∧
B
⊂
x
→
B
≼
x
11
php
⊢
x
∈
ω
∧
B
⊂
x
→
¬
x
≈
B
12
ensym
⊢
B
≈
x
→
x
≈
B
13
11
12
nsyl
⊢
x
∈
ω
∧
B
⊂
x
→
¬
B
≈
x
14
brsdom
⊢
B
≺
x
↔
B
≼
x
∧
¬
B
≈
x
15
10
13
14
sylanbrc
⊢
x
∈
ω
∧
B
⊂
x
→
B
≺
x
16
5
15
vtoclg
⊢
A
∈
ω
→
A
∈
ω
∧
B
⊂
A
→
B
≺
A
17
16
anabsi5
⊢
A
∈
ω
∧
B
⊂
A
→
B
≺
A