Metamath Proof Explorer


Theorem php2

Description: Corollary of Pigeonhole Principle. (Contributed by NM, 31-May-1998)

Ref Expression
Assertion php2 A ω B A B A

Proof

Step Hyp Ref Expression
1 eleq1 x = A x ω A ω
2 psseq2 x = A B x B A
3 1 2 anbi12d x = A x ω B x A ω B A
4 breq2 x = A B x B A
5 3 4 imbi12d x = A x ω B x B x A ω B A B A
6 vex x V
7 pssss B x B x
8 ssdomg x V B x B x
9 6 7 8 mpsyl B x B x
10 9 adantl x ω B x B x
11 php x ω B x ¬ x B
12 ensym B x x B
13 11 12 nsyl x ω B x ¬ B x
14 brsdom B x B x ¬ B x
15 10 13 14 sylanbrc x ω B x B x
16 5 15 vtoclg A ω A ω B A B A
17 16 anabsi5 A ω B A B A