| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isfi |
|
| 2 |
|
bren |
|
| 3 |
|
pssss |
|
| 4 |
|
imass2 |
|
| 5 |
3 4
|
syl |
|
| 6 |
5
|
adantl |
|
| 7 |
|
pssnel |
|
| 8 |
|
eldif |
|
| 9 |
|
f1ofn |
|
| 10 |
|
difss |
|
| 11 |
|
fnfvima |
|
| 12 |
11
|
3expia |
|
| 13 |
9 10 12
|
sylancl |
|
| 14 |
|
dff1o3 |
|
| 15 |
|
imadif |
|
| 16 |
14 15
|
simplbiim |
|
| 17 |
16
|
eleq2d |
|
| 18 |
13 17
|
sylibd |
|
| 19 |
|
n0i |
|
| 20 |
18 19
|
syl6 |
|
| 21 |
8 20
|
biimtrrid |
|
| 22 |
21
|
exlimdv |
|
| 23 |
22
|
imp |
|
| 24 |
7 23
|
sylan2 |
|
| 25 |
|
ssdif0 |
|
| 26 |
24 25
|
sylnibr |
|
| 27 |
|
dfpss3 |
|
| 28 |
6 26 27
|
sylanbrc |
|
| 29 |
|
imadmrn |
|
| 30 |
|
f1odm |
|
| 31 |
30
|
imaeq2d |
|
| 32 |
|
f1ofo |
|
| 33 |
|
forn |
|
| 34 |
32 33
|
syl |
|
| 35 |
29 31 34
|
3eqtr3a |
|
| 36 |
35
|
psseq2d |
|
| 37 |
36
|
adantr |
|
| 38 |
28 37
|
mpbid |
|
| 39 |
|
php2 |
|
| 40 |
38 39
|
sylan2 |
|
| 41 |
|
nnfi |
|
| 42 |
|
f1of1 |
|
| 43 |
|
f1ores |
|
| 44 |
42 3 43
|
syl2an |
|
| 45 |
|
vex |
|
| 46 |
45
|
resex |
|
| 47 |
|
f1oeq1 |
|
| 48 |
46 47
|
spcev |
|
| 49 |
|
bren |
|
| 50 |
48 49
|
sylibr |
|
| 51 |
44 50
|
syl |
|
| 52 |
|
endom |
|
| 53 |
|
sdomdom |
|
| 54 |
|
domfi |
|
| 55 |
53 54
|
sylan2 |
|
| 56 |
55
|
3adant2 |
|
| 57 |
|
domfi |
|
| 58 |
57
|
3adant3 |
|
| 59 |
|
domsdomtrfi |
|
| 60 |
58 59
|
syld3an1 |
|
| 61 |
56 60
|
syld3an1 |
|
| 62 |
52 61
|
syl3an2 |
|
| 63 |
62
|
3expia |
|
| 64 |
41 51 63
|
syl2an |
|
| 65 |
40 64
|
mpd |
|
| 66 |
65
|
exp32 |
|
| 67 |
66
|
exlimdv |
|
| 68 |
2 67
|
biimtrid |
|
| 69 |
|
ensymfib |
|
| 70 |
69
|
adantr |
|
| 71 |
70
|
biimp3ar |
|
| 72 |
|
endom |
|
| 73 |
|
sdomdom |
|
| 74 |
|
domfi |
|
| 75 |
73 74
|
sylan2 |
|
| 76 |
75
|
3adant3 |
|
| 77 |
|
sdomdomtrfi |
|
| 78 |
76 77
|
syld3an1 |
|
| 79 |
72 78
|
syl3an3 |
|
| 80 |
71 79
|
syld3an3 |
|
| 81 |
41 80
|
syl3an1 |
|
| 82 |
81
|
3com23 |
|
| 83 |
82
|
3exp |
|
| 84 |
68 83
|
syldd |
|
| 85 |
84
|
rexlimiv |
|
| 86 |
1 85
|
sylbi |
|
| 87 |
86
|
imp |
|