Step |
Hyp |
Ref |
Expression |
1 |
|
isfi |
|
2 |
|
relen |
|
3 |
2
|
brrelex1i |
|
4 |
|
pssss |
|
5 |
|
ssdomg |
|
6 |
5
|
imp |
|
7 |
3 4 6
|
syl2an |
|
8 |
7
|
adantll |
|
9 |
|
bren |
|
10 |
|
imass2 |
|
11 |
4 10
|
syl |
|
12 |
11
|
adantl |
|
13 |
|
pssnel |
|
14 |
|
eldif |
|
15 |
|
f1ofn |
|
16 |
|
difss |
|
17 |
|
fnfvima |
|
18 |
17
|
3expia |
|
19 |
15 16 18
|
sylancl |
|
20 |
|
dff1o3 |
|
21 |
|
imadif |
|
22 |
20 21
|
simplbiim |
|
23 |
22
|
eleq2d |
|
24 |
19 23
|
sylibd |
|
25 |
|
n0i |
|
26 |
24 25
|
syl6 |
|
27 |
14 26
|
syl5bir |
|
28 |
27
|
exlimdv |
|
29 |
28
|
imp |
|
30 |
13 29
|
sylan2 |
|
31 |
|
ssdif0 |
|
32 |
30 31
|
sylnibr |
|
33 |
|
dfpss3 |
|
34 |
12 32 33
|
sylanbrc |
|
35 |
|
imadmrn |
|
36 |
|
f1odm |
|
37 |
36
|
imaeq2d |
|
38 |
|
f1ofo |
|
39 |
|
forn |
|
40 |
38 39
|
syl |
|
41 |
35 37 40
|
3eqtr3a |
|
42 |
41
|
psseq2d |
|
43 |
42
|
adantr |
|
44 |
34 43
|
mpbid |
|
45 |
|
php |
|
46 |
44 45
|
sylan2 |
|
47 |
|
f1of1 |
|
48 |
|
f1ores |
|
49 |
47 4 48
|
syl2an |
|
50 |
|
vex |
|
51 |
50
|
resex |
|
52 |
|
f1oeq1 |
|
53 |
51 52
|
spcev |
|
54 |
|
bren |
|
55 |
53 54
|
sylibr |
|
56 |
49 55
|
syl |
|
57 |
|
entr |
|
58 |
57
|
expcom |
|
59 |
56 58
|
syl |
|
60 |
59
|
adantl |
|
61 |
46 60
|
mtod |
|
62 |
61
|
exp32 |
|
63 |
62
|
exlimdv |
|
64 |
9 63
|
syl5bi |
|
65 |
64
|
imp31 |
|
66 |
|
entr |
|
67 |
66
|
ex |
|
68 |
|
ensym |
|
69 |
67 68
|
syl6com |
|
70 |
69
|
ad2antlr |
|
71 |
65 70
|
mtod |
|
72 |
|
brsdom |
|
73 |
8 71 72
|
sylanbrc |
|
74 |
73
|
exp31 |
|
75 |
74
|
rexlimiv |
|
76 |
1 75
|
sylbi |
|
77 |
76
|
imp |
|