Metamath Proof Explorer


Theorem php3

Description: Corollary of Pigeonhole Principle. If A is finite and B is a proper subset of A , the B is strictly less numerous than A . Stronger version of Corollary 6C of Enderton p. 135. (Contributed by NM, 22-Aug-2008) Avoid ax-pow . (Revised by BTernaryTau, 26-Nov-2024)

Ref Expression
Assertion php3 AFinBABA

Proof

Step Hyp Ref Expression
1 isfi AFinxωAx
2 bren Axff:A1-1 ontox
3 pssss BABA
4 imass2 BAfBfA
5 3 4 syl BAfBfA
6 5 adantl f:A1-1 ontoxBAfBfA
7 pssnel BAyyA¬yB
8 eldif yAByA¬yB
9 f1ofn f:A1-1 ontoxfFnA
10 difss ABA
11 fnfvima fFnAABAyABfyfAB
12 11 3expia fFnAABAyABfyfAB
13 9 10 12 sylancl f:A1-1 ontoxyABfyfAB
14 dff1o3 f:A1-1 ontoxf:AontoxFunf-1
15 imadif Funf-1fAB=fAfB
16 14 15 simplbiim f:A1-1 ontoxfAB=fAfB
17 16 eleq2d f:A1-1 ontoxfyfABfyfAfB
18 13 17 sylibd f:A1-1 ontoxyABfyfAfB
19 n0i fyfAfB¬fAfB=
20 18 19 syl6 f:A1-1 ontoxyAB¬fAfB=
21 8 20 syl5bir f:A1-1 ontoxyA¬yB¬fAfB=
22 21 exlimdv f:A1-1 ontoxyyA¬yB¬fAfB=
23 22 imp f:A1-1 ontoxyyA¬yB¬fAfB=
24 7 23 sylan2 f:A1-1 ontoxBA¬fAfB=
25 ssdif0 fAfBfAfB=
26 24 25 sylnibr f:A1-1 ontoxBA¬fAfB
27 dfpss3 fBfAfBfA¬fAfB
28 6 26 27 sylanbrc f:A1-1 ontoxBAfBfA
29 imadmrn fdomf=ranf
30 f1odm f:A1-1 ontoxdomf=A
31 30 imaeq2d f:A1-1 ontoxfdomf=fA
32 f1ofo f:A1-1 ontoxf:Aontox
33 forn f:Aontoxranf=x
34 32 33 syl f:A1-1 ontoxranf=x
35 29 31 34 3eqtr3a f:A1-1 ontoxfA=x
36 35 psseq2d f:A1-1 ontoxfBfAfBx
37 36 adantr f:A1-1 ontoxBAfBfAfBx
38 28 37 mpbid f:A1-1 ontoxBAfBx
39 php2 xωfBxfBx
40 38 39 sylan2 xωf:A1-1 ontoxBAfBx
41 nnfi xωxFin
42 f1of1 f:A1-1 ontoxf:A1-1x
43 f1ores f:A1-1xBAfB:B1-1 ontofB
44 42 3 43 syl2an f:A1-1 ontoxBAfB:B1-1 ontofB
45 vex fV
46 45 resex fBV
47 f1oeq1 y=fBy:B1-1 ontofBfB:B1-1 ontofB
48 46 47 spcev fB:B1-1 ontofByy:B1-1 ontofB
49 bren BfByy:B1-1 ontofB
50 48 49 sylibr fB:B1-1 ontofBBfB
51 44 50 syl f:A1-1 ontoxBABfB
52 endom BfBBfB
53 sdomdom fBxfBx
54 domfi xFinfBxfBFin
55 53 54 sylan2 xFinfBxfBFin
56 55 3adant2 xFinBfBfBxfBFin
57 domfi fBFinBfBBFin
58 57 3adant3 fBFinBfBfBxBFin
59 domsdomtrfi BFinBfBfBxBx
60 58 59 syld3an1 fBFinBfBfBxBx
61 56 60 syld3an1 xFinBfBfBxBx
62 52 61 syl3an2 xFinBfBfBxBx
63 62 3expia xFinBfBfBxBx
64 41 51 63 syl2an xωf:A1-1 ontoxBAfBxBx
65 40 64 mpd xωf:A1-1 ontoxBABx
66 65 exp32 xωf:A1-1 ontoxBABx
67 66 exlimdv xωff:A1-1 ontoxBABx
68 2 67 syl5bi xωAxBABx
69 ensymfib xFinxAAx
70 69 adantr xFinBxxAAx
71 70 biimp3ar xFinBxAxxA
72 endom xAxA
73 sdomdom BxBx
74 domfi xFinBxBFin
75 73 74 sylan2 xFinBxBFin
76 75 3adant3 xFinBxxABFin
77 sdomdomtrfi BFinBxxABA
78 76 77 syld3an1 xFinBxxABA
79 72 78 syl3an3 xFinBxxABA
80 71 79 syld3an3 xFinBxAxBA
81 41 80 syl3an1 xωBxAxBA
82 81 3com23 xωAxBxBA
83 82 3exp xωAxBxBA
84 68 83 syldd xωAxBABA
85 84 rexlimiv xωAxBABA
86 1 85 sylbi AFinBABA
87 86 imp AFinBABA